English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Intraparietal sulcus represents audiovisual space

Rohe, T., & Noppeney, U. (2012). Intraparietal sulcus represents audiovisual space. Poster presented at Bernstein Conference 2012, München, Germany. doi:10.3389/conf.fncom.2012.55.00054.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-B648-7 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-9BF2-F
Genre: Poster

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Rohe, T1, 2, Author              
Noppeney, U1, 2, Author              
Affiliations:
1Research Group Cognitive Neuroimaging, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497804              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Previous research has demonstrated that human observers locate audiovisual (AV) signals in space by averaging auditory (A) and visual (V) spatial signals according to their relative sensory reliabilities (=inverse of variance) (Ernst Banks, 2002; Alais Burr, 2004). This form of AV integration is optimal in that it provides the most reliable percept. Yet, the neural systems mediating integration of spatial inputs remain unclear. Multisensory integration of spatial signals has previously been related to higher order association areas such as intraparietal sulcus (IPS) as well as early sensory areas like the planum temporale (Bonath et al., 2007). In the current fMRI study, we investigated whether and how early visual (V1-V3) and higher association (IPS) areas represent A and V spatial information given their retinotopic organization. One subject was presented with synchronous audiovisual signals, at spatially congruent or discrepant locations along the azimuth and at two levels of sensory reliability. Hence, the experimental design factorially manipulated: (1) V location, (2) A location, (3) V reliability. The subject’s task was to localize the A signal. Retinotopic maps in visual areas and IPS were measured with standard wedge and ring checkerboard stimuli. At the behavioral level, the perceived location of the A input was shifted towards the location of the V input depending on the relative A and V reliabilities. At the neural level, the cue locations represented in retinotopic maps were decoded by computing a population vector estimate (Pouget et al., 2000) from the voxels’ BOLD responses to the AV cues given the voxels’ preferred visual field coordinate. In early visual areas (V1-V3), the decoded cue locations were determined by the V spatial signal but were independent from the A spatial signal. In IPS, the decoded cue locations were determined by the V and the A spatial signals if relative V reliability was low. In conclusion, our results suggest that the brain represents AV spatial location in IPS in qualitative agreement with reliability-weighted multisensory integration.

Details

show
hide
Language(s):
 Dates: 2012-09
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.3389/conf.fncom.2012.55.00054
BibTex Citekey: RoheN2012_3
 Degree: -

Event

show
hide
Title: Bernstein Conference 2012
Place of Event: München, Germany
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: Frontiers in Computational Neuroscience
  Abbreviation : Front Comput Neurosci
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Lausanne : Frontiers Research Foundation
Pages: - Volume / Issue: 2012 (Conference Abstract: Bernstein Conference 2012) Sequence Number: - Start / End Page: 192 - 193 Identifier: Other: 1662-5188
CoNE: https://pure.mpg.de/cone/journals/resource/1662-5188