English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Multisensory integration in the estimation of walked distances

Campos, J., Butler, J., & Bülthoff, H. (2012). Multisensory integration in the estimation of walked distances. Experimental Brain Research, 218(4), 551-565. doi:10.1007/s00221-012-3048-1.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-B768-6 Version Permalink: http://hdl.handle.net/21.11116/0000-0001-1A05-D
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Campos, JL1, 2, Author              
Butler, JS1, 2, Author              
Bülthoff, HH1, 2, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: When walking through space, both dynamic visual information (optic flow) and body-based information (proprioceptive and vestibular) jointly specify the magnitude of distance travelled. While recent evidence has demonstrated the extent to which each of these cues can be used independently, less is known about how they are integrated when simultaneously present. Many studies have shown that sensory information is integrated using a weighted linear sum, yet little is known about whether this holds true for the integration of visual and body-based cues for travelled distance perception. In this study using Virtual Reality technologies, participants first travelled a predefined distance and subsequently matched this distance by adjusting an egocentric, in-depth target. The visual stimulus consisted of a long hallway and was presented in stereo via a head-mounted display. Body-based cues were provided either by walking in a fully tracked free-walking space (Exp. 1) or by being passively moved in a wheelchair (Exp. 2). Travelled distances were provided either through optic flow alone, body-based cues alone or through both cues combined. In the combined condition, visually specified distances were either congruent (1.0×) or incongruent (0.7× or 1.4×) with distances specified by body-based cues. Responses reflect a consistent combined effect of both visual and body-based information, with an overall higher influence of body-based cues when walking and a higher influence of visual cues during passive movement. When comparing the results of Experiments 1 and 2, it is clear that both proprioceptive and vestibular cues contribute to travelled distance estimates during walking. These observed results were effectively described using a basic linear weighting model.

Details

show
hide
Language(s):
 Dates: 2012-05
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/s00221-012-3048-1
BibTex Citekey: CamposBB2012
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Experimental Brain Research
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 218 (4) Sequence Number: - Start / End Page: 551 - 565 Identifier: -