English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Psychophysical assessment of auditory feature selection during acoustic tasks in the rat

Ng, B., & Kayser, C. (2011). Psychophysical assessment of auditory feature selection during acoustic tasks in the rat. Poster presented at 41st Annual Meeting of the Society for Neuroscience (Neuroscience 2011), Washington, DC, USA.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-B948-9 Version Permalink: http://hdl.handle.net/21.11116/0000-0002-192C-2
Genre: Poster

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Ng, BS1, 2, Author              
Kayser, C1, 2, 3, Author              
Affiliations:
1Research Group Physiology of Sensory Integration, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497808              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              

Content

show
hide
Free keywords: -
 Abstract: Natural auditory objects are complex and often composed of more than one defining acoustic feature. However, not all features are usually essential for the spontaneous identification of a given object and a given object can often be detected or discriminated using several of its features. For example, a dynamically moving sound might be localized by its immediate intensity difference between the ears or by slower changes in amplitude over time. How different stimulus features for object discrimination are selected in the brain is not well understood. In addition, it remains unclear how the fidelity of cue selection may be dynamically altered in a given task context. The goal of this project is to explore a rodent model to study the neural basis of sound feature selection in acoustic discrimination. We tested rats in an acoustic motion discrimination task, where the animals had to discriminate right- and left-ward moving sounds. The two stimuli consisted of white noise pulses that were simultaneously presented from each side of the operant conditioning box. The percept of horizontal motion was then imposed by modulating the amplitude of these two streams in opposite directions over time and by a difference in the initial amplitude of the left and right streams. This provided two potential cues to solve the task, the relative weighting of which could also be manipulated by changing the level of amplitude difference between both streams. Using reaction time and correct percept identification as behavioral metrics, we found that rats spontaneously developed a preference for one of the two stimulus features for discrimination, mainly for stimulus onset. Interestingly, however, individual animals sometimes relied on different features to identify each stimulus (leftward or rightward moving). These results provide the grounds to study the neural mechanism of this stimulus selection and encoding, and pave the way for a more detailed analysis of the spontaneous selection of features for auditory identification tasks. Specifically, our results highlight the heterogeneity in the strategies developed by animals to solve sensory tasks and parallel previous results found by studies in the visual system.

Details

show
hide
Language(s):
 Dates: 2011-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: BibTex Citekey: NgK2011
 Degree: -

Event

show
hide
Title: 41st Annual Meeting of the Society for Neuroscience (Neuroscience 2011)
Place of Event: Washington, DC, USA
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: 41st Annual Meeting of the Society for Neuroscience (Neuroscience 2011)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 173.21 Start / End Page: - Identifier: -