日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  A Maximum Entropy Approach to Semi-supervised Learning

Erkan, A., & Altun, Y. (2010). A Maximum Entropy Approach to Semi-supervised Learning. Poster presented at 30th International Workshop on Bayesian Inference and Maximun Entropy Methods in Science and Engineering (MaxEnt 2010), Chamonix, France.

Item is

基本情報

表示: 非表示:
資料種別: ポスター

ファイル

表示: ファイル

関連URL

表示:
非表示:
説明:
-
OA-Status:

作成者

表示:
非表示:
 作成者:
Erkan, AN1, 2, 著者           
Altun, Y1, 2, 著者           
所属:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

内容説明

表示:
非表示:
キーワード: -
 要旨: Maximum entropy (MaxEnt) framework has been studied extensively in supervised
learning. Here, the goal is to find a distribution p that maximizes an entropy function
while enforcing data constraints so that the expected values of some (pre-defined) features
with respect to p match their empirical counterparts approximately. Using different
entropy measures, different model spaces for p and different approximation criteria
for the data constraints yields a family of discriminative supervised learning methods
(e.g., logistic regression, conditional random fields, least squares and boosting). This
framework is known as the generalized maximum entropy framework.
Semi-supervised learning (SSL) has emerged in the last decade as a promising field
that combines unlabeled data along with labeled data so as to increase the accuracy and
robustness of inference algorithms. However, most SSL algorithms to date have had
trade-offs, e.g., in terms of scalability or applicability to multi-categorical data. We
extend the generalized MaxEnt framework to develop a family of novel SSL algorithms.
Extensive empirical evaluation on benchmark data sets that are widely used in
the literature demonstrates the validity and competitiveness of the proposed algorithms.

資料詳細

表示:
非表示:
言語:
 日付: 2010-07
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): BibTex参照ID: 6747
 学位: -

関連イベント

表示:
非表示:
イベント名: 30th International Workshop on Bayesian Inference and Maximun Entropy Methods in Science and Engineering (MaxEnt 2010)
開催地: Chamonix, France
開始日・終了日: 2010-07-04 - 2010-07-09

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: 30th International Workshop on Bayesian Inference and Maximun Entropy Methods in Science and Engineering (MaxEnt 2010)
種別: 会議論文集
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: - 通巻号: - 開始・終了ページ: 80 識別子(ISBN, ISSN, DOIなど): -