English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Estimation of environmental force for the haptic interface of robotic surgery

Son, H., Bhattacharjee, T., & Lee, D. (2010). Estimation of environmental force for the haptic interface of robotic surgery. International Journal of Medical Robotics and Computer Assisted Surgery, 6(2), 221-230. doi:10.1002/rcs.311.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-BF72-A Version Permalink: http://hdl.handle.net/21.11116/0000-0002-7598-F
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Son, HI1, 2, Author              
Bhattacharjee, T, Author
Lee, DY, Author
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Background The success of a telerobotic surgery system with haptic feedback requires accurate force-tracking and position-tracking capacity of the slave robot. The two-channel force-position control architecture is widely used in teleoperation systems with haptic feedback for its better force-tracking characteristics and superior position-tracking capacity for the maximum stability margin. This control architecture, however, requires force sensors at the end-effector of the slave robot to measure the environment force. However, it is difficult to attach force sensors to slave robots, mainly due to their large size, insulation issues and also large currents often flowing through the end-effector for incision or cautery of tissues. Methods This paper provides a method to estimate the environment force, using a function parameter matrix and a recursive least-squares method. The estimated force is used to feed back the force information to the surgeon through the control architecture without involving the force sensors. Results The simulation and experimental results verify the efficacy of the proposed method. The force estimation error is negligible and the slave device successfully tracks the position of the master device while the stability of the teleoperation system is maintained. Conclusions The developed method allows practical haptic feedback for telerobotic surgery systems in the two-channel force-position control scheme without the direct employment of force sensors at the end-effector of the slave robot.

Details

show
hide
Language(s):
 Dates: 2010-06
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1002/rcs.311
BibTex Citekey: 6447
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: International Journal of Medical Robotics and Computer Assisted Surgery
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 6 (2) Sequence Number: - Start / End Page: 221 - 230 Identifier: -