日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  Learning Continuous Grasp Affordances by Sensorimotor Exploration

Detry, R., Başeski, E., Popović, M., Touati, Y., Krüger, N., Krömer, O., Peters, J., & Piater, J. (2010). Learning Continuous Grasp Affordances by Sensorimotor Exploration. In O., Sigaud, & J., Peters (Eds.), From Motor Learning to Interaction Learning in Robots (pp. 451-465). Berlin, Germany: Springer.

Item is

基本情報

表示: 非表示:
資料種別: 書籍の一部

ファイル

表示: ファイル

作成者

表示:
非表示:
 作成者:
Detry, R, 著者
Başeski, E, 著者
Popović, M, 著者
Touati, Y, 著者
Krüger, N, 著者
Krömer, O1, 2, 著者           
Peters, J1, 2, 著者           
Piater, J, 著者           
所属:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

内容説明

表示:
非表示:
キーワード: -
 要旨: We develop means of learning and representing object grasp affordances probabilistically. By grasp affordance, we refer to an entity that is able to assess whether a given relative object-gripper configuration will yield a stable grasp. These affordances are represented with grasp densities, continuous probability density functions defined on the space of 3D positions and orientations. Grasp densities are registered with a visual model of the object they characterize. They are exploited by aligning them to a target object using visual pose estimation. Grasp densities are refined through experience: A robot “plays” with an object by executing grasps drawn randomly for the object’s grasp density. The robot then uses the outcomes of these grasps to build a richer density through an importance sampling mechanism. Initial grasp densities, called hypothesis densities, are bootstrapped from grasps collected using a motion capture system, or from grasps generated from the visual model of the object. Refined densities, called empirical densities, represent affordances that have been confirmed through physical experience. The applicability of our method is demonstrated by producing empirical densities for two object with a real robot and its 3-finger hand. Hypothesis densities are created from visual cues and human demonstration.

資料詳細

表示:
非表示:
言語:
 日付: 2010-01
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1007/978-3-642-05181-4_19
BibTex参照ID: 6621
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: From Motor Learning to Interaction Learning in Robots
種別: 書籍
 著者・編者:
Sigaud, O, 編集者
Peters, J1, 2, 編集者           
所属:
1 Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795            
2 Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794            
出版社, 出版地: Berlin, Germany : Springer
ページ: - 巻号: - 通巻号: - 開始・終了ページ: 451 - 465 識別子(ISBN, ISSN, DOIなど): ISBN: 978-3-642-05181-4

出版物 2

表示:
非表示:
出版物名: Studies in Computational Intelligence
種別: 連載記事
 著者・編者:
所属:
出版社, 出版地: -
ページ: - 巻号: 264 通巻号: - 開始・終了ページ: - 識別子(ISBN, ISSN, DOIなど): -