English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Efficient Subwindow Search: A Branch and Bound Framework for Object Localization

Lampert, C., Blaschko, M., & Hofmann, T. (2009). Efficient Subwindow Search: A Branch and Bound Framework for Object Localization. IEEE Transactions on Pattern Analysis and Machine Intelligence, 31(12), 2129-2142. doi:10.1109/TPAMI.2009.144.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-C1BC-C Version Permalink: http://hdl.handle.net/21.11116/0000-0002-BAE8-7
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Lampert, CH1, 2, Author              
Blaschko, MB, Author              
Hofmann, T, Author              
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Most successful object recognition systems rely on binary classification, deciding only if an object is present or not, but not providing information on the actual object location. To estimate the object‘s location, one can take a sliding window approach, but this strongly increases the computational cost because the classifier or similarity function has to be evaluated over a large set of candidate subwindows. In this paper, we propose a simple yet powerful branch and bound scheme that allows efficient maximization of a large class of quality functions over all possible subimages. It converges to a globally optimal solution typically in linear or even sublinear time, in contrast to the quadratic scaling of exhaustive or sliding window search. We show how our method is applicable to different object detection and image retrieval scenarios. The achieved speedup allows the use of classifiers for localization that formerly were considered too slow for this task, such as SVMs with a spatial pyramid kernel or nearest-neighbor classifiers based on the chi^2 distance. We demonstrate state-of-the-art localization performance of the resulting systems on the UIUC Cars data set, the PASCAL VOC 2006 data set, and in the PASCAL VOC 2007 competition.

Details

show
hide
Language(s):
 Dates: 2009-12
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1109/TPAMI.2009.144
BibTex Citekey: 5942
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: IEEE Transactions on Pattern Analysis and Machine Intelligence
  Other : IEEE Trans. Pattern Anal. Mach. Intell.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : IEEE Computer Society.
Pages: - Volume / Issue: 31 (12) Sequence Number: - Start / End Page: 2129 - 2142 Identifier: ISSN: 0162-8828
CoNE: https://pure.mpg.de/cone/journals/resource/954925479551