English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Visually evoked activity in cortical cells imaged in freely moving animals

Sawinski, J., Wallace, D., Greenberg, D., Grossmann, S., Denk, W., & Kerr, J. (2009). Visually evoked activity in cortical cells imaged in freely moving animals. Proceedings of the National Academy of Sciences of the United States of America, 106(46), 19557-19562. doi:10.1073/pnas.0903680106.

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Sawinski, J1, 2, 3, Author              
Wallace, DJ1, 2, 3, Author              
Greenberg, DS1, 2, 3, Author              
Grossmann, S, Author
Denk, W, Author
Kerr, JND1, 2, 3, Author              
Affiliations:
1Former Research Group Network Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_2528697              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Research Group Neural Population Imaging, Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497807              

Content

show
hide
Free keywords: -
 Abstract: We describe a miniaturized head-mounted multiphoton microscope and its use for recording Ca2+ transients from the somata of layer 2/3 neurons in the visual cortex of awake, freely moving rats. Images contained up to 20 neurons and were stable enough to record continuously for >5 min per trial and 20 trials per imaging session, even as the animal was running at velocities of up to 0.6 m/s. Neuronal Ca2+ transients were readily detected, and responses to various static visual stimuli were observed during free movement on a running track. Neuronal activity was sparse and increased when the animal swept its gaze across a visual stimulus. Neurons showing preferential activation by specific stimuli were observed in freely moving animals. These results demonstrate that the multiphoton fiberscope is suitable for functional imaging in awake and freely moving animals.

Details

show
hide
Language(s):
 Dates: 2009-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1073/pnas.0903680106
BibTex Citekey: 6149
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Acad. Sci. USA
  Other : Proc. Acad. Sci. U.S.A.
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : PNAS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 106 (46) Sequence Number: - Start / End Page: 19557 - 19562 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230