Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Similarity, Kernels, and the Triangle Inequality

Jäkel, F., Schölkopf, B., & Wichmann, F. (2008). Similarity, Kernels, and the Triangle Inequality. Journal of Mathematical Psychology, 52(2), 297-303. doi:10.1016/j.jmp.2008.03.001.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Jäkel, F, Autor           
Schölkopf, B1, 2, Autor           
Wichmann, FA, Autor           
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Similarity is used as an explanatory construct throughout psychology and multidimensional scaling (MDS) is the most popular way to assess similarity. In MDS, similarity is intimately connected to the idea of a geometric representation of stimuli in a perceptual space. Whilst connecting similarity and closeness of stimuli in a geometric representation may be intuitively plausible, Tversky and Gati [Tversky, A., Gati, I. (1982). Similarity, separability, and the triangle inequality. Psychological Review, 89(2), 123–154] have reported data which are inconsistent with the usual geometric representations that are based on segmental additivity. We show that similarity measures based on Shepard’s universal law of generalization [Shepard, R. N. (1987). Toward a universal law of generalization for psychologica science. Science, 237(4820), 1317–1323] lead to an inner product representation in a reproducing kernel Hilbert space. In such a space stimuli are represented by their similarity to all other stimuli. This representation, based on Shepard’s law, has a natural metric that does not have additive segments whilst still retaining the intuitive notion of connecting similarity and distance between stimuli. Furthermore, this representation has the psychologically appealing property that the distance between stimuli is bounded.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2008-09
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/j.jmp.2008.03.001
BibTex Citekey: 4785
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Mathematical Psychology
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Orlando, Fla. : Academic Press
Seiten: - Band / Heft: 52 (2) Artikelnummer: - Start- / Endseite: 297 - 303 Identifikator: ISSN: 0022-2496
CoNE: https://pure.mpg.de/cone/journals/resource/954922646040