English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Solution structure of the Legionella pneumophila Mip-rapamycin complex

Ceymann, A., Horstmann, M., Ehses, P., Schweimer, K., Paschke, A.-K., Steinert, M., et al. (2008). Solution structure of the Legionella pneumophila Mip-rapamycin complex. BMC Structural Biology, 8: 17, pp. 1-12. doi:10.1186/1472-6807-8-17.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-C799-6 Version Permalink: http://hdl.handle.net/21.11116/0000-0003-2FDC-2
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Ceymann, A, Author
Horstmann, M, Author
Ehses, P1, Author              
Schweimer, K, Author
Paschke , A-K, Author
Steinert, M, Author
Faber, C, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Background Legionella pneumphila is the causative agent of Legionnaires' disease. A major virulence factor of the pathogen is the homodimeric surface protein Mip. It shows peptidyl-prolyl cis/trans isomerase activty and is a receptor of FK506 and rapamycin, which both inhibit its enzymatic function. Insight into the binding process may be used for the design of novel Mip inhibitors as potential drugs against Legionnaires' disease. Results We have solved the solution structure of free Mip77–213 and the Mip77–213-rapamycin complex by NMR spectroscopy. Mip77–213 showed the typical FKBP-fold and only minor rearrangements upon binding of rapamycin. Apart from the configuration of a flexible hairpin loop, which is partly stabilized upon binding, the solution structure confirms the crystal structure. Comparisons to the structures of free FKBP12 and the FKBP12-rapamycin complex suggested an identical binding mode for both proteins. Conclusion The structural similarity of the Mip-rapamycin and FKBP12-rapamycin complexes suggests that FKBP12 ligands may be promising starting points for the design of novel Mip inhibitors. The search for a novel drug against Legionnaires' disease may therefore benefit from the large variety of known FKBP12 inhibitors.

Details

show
hide
Language(s):
 Dates: 2008-08
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1186/1472-6807-8-17
BibTex Citekey: CeymannHESPSF2008
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: BMC Structural Biology
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: London : BioMed Central
Pages: - Volume / Issue: 8 Sequence Number: 17 Start / End Page: 1 - 12 Identifier: ISSN: 1471-2237
CoNE: https://pure.mpg.de/cone/journals/resource/1000000000223970_2