English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI

Rauch, A., Rainer, G., & Logothetis, N. (2008). The effect of a serotonin-induced dissociation between spiking and perisynaptic activity on BOLD functional MRI. Proceedings of the National Academy of Sciences of the United States of America, 105(18), 6759-6764. doi:10.1073/pnas.0800312105.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-C973-A Version Permalink: http://hdl.handle.net/21.11116/0000-0003-309F-4
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Rauch, A1, 2, Author              
Rainer, G1, 2, Author              
Logothetis, NK1, 2, Author              
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: The relationship of the blood oxygen-level-dependent (BOLD) signal to its underlying neuronal activity is still poorly understood. Combined physiology and functional MRI experiments suggested that local field potential (LFP) is a better predictor of the BOLD signal than multiunit activity (MUA). To further explore this relationship, we simultaneously recorded BOLD and electrophysiological activity while inducing a dissociation of MUA from LFP activity with injections of the neuromodulator BP554 into the primary visual cortex of anesthetized monkeys. BP554 is a 5-HT1A agonist acting primarily on the membrane of efferent neurons by potassium-induced hyperpolarization. Its infusion in visual cortex reliably reduced MUA without affecting either LFP or BOLD activity. This finding suggests that the efferents of a neuronal network pose relatively little metabolic burden compared with the overall presynaptic and postsynaptic processing of incoming afferents. We discuss implications of this finding for the interpretat ion of BOLD activity.

Details

show
hide
Language(s):
 Dates: 2008-05
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1073/pnas.0800312105
BibTex Citekey: 5176
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Proceedings of the National Academy of Sciences of the United States of America
  Other : Proc. Acad. Sci. USA
  Other : Proc. Acad. Sci. U.S.A.
  Other : Proceedings of the National Academy of Sciences of the USA
  Abbreviation : PNAS
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Washington, D.C. : National Academy of Sciences
Pages: - Volume / Issue: 105 (18) Sequence Number: - Start / End Page: 6759 - 6764 Identifier: ISSN: 0027-8424
CoNE: https://pure.mpg.de/cone/journals/resource/954925427230