Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

 
 
DownloadE-Mail
  Optimization Techniques for Semi-Supervised Support Vector Machines

Chapelle, O., Sindhwani, V., & Keerthi, S. (2008). Optimization Techniques for Semi-Supervised Support Vector Machines. Journal of Machine Learning Research, 9, 203-233.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:

Urheber

einblenden:
ausblenden:
 Urheber:
Chapelle, O1, Autor           
Sindhwani, V, Autor
Keerthi, SS, Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: Due to its wide applicability, the problem of semi-supervised classification is attracting increasing attention in machine learning. Semi-Supervised Support Vector Machines (S3VMs) are based on applying the margin maximization principle to both labeled and unlabeled examples. Unlike SVMs, their formulation leads to a non-convex optimization problem. A suite of algorithms have recently been proposed for solving S3VMs. This paper reviews key ideas in this literature. The performance and behavior of various S3VMs algorithms is studied together, under a common experimental setting.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2008-02
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: 5369
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Journal of Machine Learning Research
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Brookline, MA : Microtome Publishing
Seiten: - Band / Heft: 9 Artikelnummer: - Start- / Endseite: 203 - 233 Identifikator: ISSN: 1532-4435
CoNE: https://pure.mpg.de/cone/journals/resource/111002212682020