English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A Quantum-Statistical-Mechanical Extension of Gaussian Mixture Model

Tanaka, K., & Tsuda, K. (2008). A Quantum-Statistical-Mechanical Extension of Gaussian Mixture Model. Journal of Physics: Conference Series, 95(1): 012023, 1-9.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-CA97-0 Version Permalink: http://hdl.handle.net/21.11116/0000-0003-8020-7
Genre: Conference Paper

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Tanaka, K, Author
Tsuda, K1, 2, Author              
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: We propose an extension of Gaussian mixture models in the statistical-mechanical point of view. The conventional Gaussian mixture models are formulated to divide all points in given data to some kinds of classes. We introduce some quantum states constructed by superposing conventional classes in linear combinations. Our extension can provide a new algorithm in classifications of data by means of linear response formulas in the statistical mechanics.

Details

show
hide
Language(s):
 Dates: 2008-01
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1088/1742-6596/95/1/012023
BibTex Citekey: 5112
 Degree: -

Event

show
hide
Title: International Workshop on Statistical-Mechanical Informatics 2007 (IW-SMI 2007)
Place of Event: Kyoto, Japan
Start-/End Date: 2007-09-16 - 2007-09-19

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Physics: Conference Series
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Bristol : IOP Publishing
Pages: - Volume / Issue: 95 (1) Sequence Number: 012023 Start / End Page: 1 - 9 Identifier: ISSN: 1742-6588
CoNE: https://pure.mpg.de/cone/journals/resource/111097776606042