English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs

Franz, M., Stürzl, W., Hübner, W., & Mallot, H. (2008). A Robot System for Biomimetic Navigation: From Snapshots to Metric Embeddings of View Graphs. In M. Jefferies, & W.-K. Yeap (Eds.), Robotics and Cognitive Approaches to Spatial Mapping (pp. 297-314). Berlin, Germany: Springer.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-CAC5-8 Version Permalink: http://hdl.handle.net/21.11116/0000-0003-8044-F
Genre: Book Chapter

Files

show Files
hide Files
:
pdf2216.pdf (Any fulltext), 466KB
Name:
pdf2216.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Franz, MO1, 2, Author              
Stürzl, W, Author
Hübner, W, Author
Mallot, HA, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Complex navigation behaviour (way-finding) involves recognizing several places and encoding a spatial relationship between them. Way-finding skills can be classified into a hierarchy according to the complexity of the tasks that can be performed [8]. The most basic form of way-finding is route navigation, followed by topological navigation where several routes are integrated into a graph-like representation. The highest level, survey navigation, is reached when this graph can be embedded into a common reference frame. In this chapter, we present the building blocks for a biomimetic robot navigation system that encompasses all levels of this hierarchy. As a local navigation method, we use scene-based homing. In this scheme, a goal location is characterized either by a panoramic snapshot of the light intensities as seen from the place, or by a record of the distances to the surrounding objects. The goal is found by moving in the direction that minimizes the discrepancy between the recorded intensities or distances and the current sensory input. For learning routes, the robot selects distinct views during exploration that are close enough to be reached by snapshot-based homing. When it encounters already visited places during route learning, it connects the routes and thus forms a topological representation of its environment termed a view graph. The final stage, survey navigation, is achieved by a graph embedding procedure which complements the topologic information of the view graph with odometric position estimates. Calculation of the graph embedding is done with a modified multidimensional scaling algorithm which makes use of distances and angles between nodes.

Details

show
hide
Language(s):
 Dates: 2008
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1007/978-3-540-75388-9_18
BibTex Citekey: 2216
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Robotics and Cognitive Approaches to Spatial Mapping
Source Genre: Book
 Creator(s):
Jefferies, ME, Editor
Yeap, W-K, Editor
Affiliations:
-
Publ. Info: Berlin, Germany : Springer
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 297 - 314 Identifier: ISBN: 978-3-540-75388-9

Source 2

show
hide
Title: Springer Tracts in Advanced Robotics
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 38 Sequence Number: - Start / End Page: - Identifier: -