English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Microstimulation-evoked BOLD responses of the macaque cerebellar cortex

Sultan, F., Augath, M., Hammodeh, S., Oeltermann, A., & Logothetis, N. (2007). Microstimulation-evoked BOLD responses of the macaque cerebellar cortex. In 37th Annual Meeting of the Society for Neuroscience (Neuroscience 2007).

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-CB61-2 Version Permalink: http://hdl.handle.net/21.11116/0000-0003-F083-9
Genre: Meeting Abstract

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Sultan, FR, Author
Augath, M1, 2, Author              
Hammodeh, S, Author
Oeltermann, A1, 2, Author              
Logothetis, NK1, 2, Author              
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Imaging brain activity evoked by intracortical electrical stimulation with fMRI is proving to be a useful tool to study functional characteristics of the brains connectivity in vivo. Here we stimulated the cerebellar cortex with microelectrodes in the anaesthetized rhesus monkey. BOLD responses in the cerebellar cortex were easily evoked with currents of 250 µA (pulse duration: 200µs; frequency: 100Hz). The spatial spread of the BOLD response after stimulation in the anterior lobe (intermediate zone of Lobule IV and V) was large and extended well to the contralateral cerebellar side. Based on the well known connectivity of the cerebellum the spread of such a bilateral activation can be explained through an antidromic excitation of mossy fibres, since these are the only excitatory fibres that can extend bilaterally in the cerebellum. Mossy fibres originating from the lateral reticular nucleus (LRN), for instance have a substantial bilateral contribution (Pijpers et al., 2006) and project heavily to the vermal and intermediate zone of the lobus anterior. So far our stimulation of the posterior lobe (Crus II) on the other hand yielded largely ipsilateral cerebellar activation. This cerebellar region receives its mossy fibres mainly from the pontine nuclei which have a strong contralateral and a weak ipsilateral contribution, indicating a lesser degree of bilaterality. Cerebellar stimulation yielded a relatively larger spatial spread of BOLD responses than what we have previously observed after cerebral cortical extrastriate and striate stimulation. This is in contradiction to predictions based on the facts that cerebral cortex intraconnectivity is much more extended than the cerebellar short-range intracortical connections. Our observations indicate that this is either due to a larger bifurcation pattern of the cerebellar mossy fibres, or/and to lower thresholds for the activation of mossy fibres and for triggering metabolic changes. In summary, microstimulation-evoked BOLD responses of the cerebellar cortex reveals different patterns of connectivity within the cerebellum and points to some important functional characteristics of these connections.

Details

show
hide
Language(s):
 Dates: 2007-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: BibTex Citekey: 4997
 Degree: -

Event

show
hide
Title: 37th Annual Meeting of the Society for Neuroscience (Neuroscience 2007)
Place of Event: San Diego, CA, USA
Start-/End Date: 2007-11-03 - 2007-11-07

Legal Case

show

Project information

show

Source 1

show
hide
Title: 37th Annual Meeting of the Society for Neuroscience (Neuroscience 2007)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 339.3 Start / End Page: - Identifier: -