English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces

Grosse-Wentrup, M., Gramann, K., & Buss, M. (2007). Adaptive Spatial Filters with predefined Region of Interest for EEG based Brain-Computer-Interfaces. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19 (pp. 537-544). Cambridge, MA, USA: MIT Press.

Item is

Files

show Files

Creators

show
hide
 Creators:
Grosse-Wentrup, M1, Author           
Gramann, K, Author
Buss, M, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: The performance of EEG-based Brain-Computer-Interfaces (BCIs) critically depends on the extraction of features from the EEG carrying information relevant for the classification of different mental states. For BCIs employing imaginary movements of different limbs, the method of Common Spatial Patterns (CSP) has been shown to achieve excellent classification results. The CSP-algorithm however suffers from a lack of robustness, requiring training data without artifacts for good performance. To overcome this lack of robustness, we propose an adaptive spatial filter that replaces the training data in the CSP approach by a-priori information. More specifically, we design an adaptive spatial filter that maximizes the ratio of the variance of the electric field originating in a predefined region of interest (ROI) and the overall variance of the measured EEG. Since it is known that the component of the EEG used for discriminating imaginary movements originates in the motor cortex, we design two adaptive spatial filters with the ROIs centered in the hand areas of the left and right motor cortex. We then use these to classify EEG data recorded during imaginary movements of the right and left hand of three subjects, and show that the adaptive spatial filters outperform the CSP-algorithm, enabling classification rates of up to 94.7 without artifact rejection.

Details

show
hide
Language(s):
 Dates: 2007-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 4981
 Degree: -

Event

show
hide
Title: Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006)
Place of Event: Vancouver, Canada
Start-/End Date: 2006-12-04 - 2006-12-07

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Neural Information Processing Systems 19
Source Genre: Proceedings
 Creator(s):
Schölkopf, B1, Editor           
Platt, JC, Editor
Hoffman, T, Editor
Affiliations:
1 Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795            
Publ. Info: Cambridge, MA, USA : MIT Press
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 537 - 544 Identifier: ISBN: 0-262-19568-2