English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Branch and Bound for Semi-Supervised Support Vector Machines

Chapelle, O., Sindhwani, V., & Keerthi, S. (2007). Branch and Bound for Semi-Supervised Support Vector Machines. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19 (pp. 217-224). Cambridge, MA, USA: MIT Press.

Item is

Files

show Files

Creators

show
hide
 Creators:
Chapelle, O1, 2, Author              
Sindhwani, V, Author
Keerthi, SS, Author
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Semi-supervised SVMs (S3VMs) attempt to learn low-density separators by maximizing the margin over labeled and unlabeled examples. The associated optimization problem is non-convex. To examine the full potential of S3VMs modulo local minima problems in current implementations, we apply branch and bound techniques for obtaining exact, globally optimal solutions. Empirical evidence suggests that the globally optimal solution can return excellent generalization performance in situations where other implementations fail completely. While our current implementation is only applicable to small datasets, we discuss variants that can potentially lead to practically useful algorithms.

Details

show
hide
Language(s):
 Dates: 2007-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 4146
 Degree: -

Event

show
hide
Title: Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006)
Place of Event: Vancouver, BC, Canada
Start-/End Date: 2006-12-04 - 2006-12-07

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Neural Information Processing Systems 19
Source Genre: Proceedings
 Creator(s):
Schölkopf, B1, Editor            
Platt, JC, Editor
Hoffman, T, Editor
Affiliations:
1 Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795            
Publ. Info: Cambridge, MA, USA : MIT Press
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 217 - 224 Identifier: ISBN: 0-262-19568-2