English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Manifold Denoising

Hein, M., & Maier, M. (2007). Manifold Denoising. In B. Schölkopf, J. Platt, & T. Hoffman (Eds.), Advances in Neural Information Processing Systems 19 (pp. 561-568). Cambridge, MA, USA: MIT Press.

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Hein, M1, 2, Author              
Maier, M1, 2, Author              
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: We consider the problem of denoising a noisily sampled submanifold M in R^d, where the submanifold M is a priori unknown and we are only given a noisy point sample. The presented denoising algorithm is based on a graph-based diffusion process of the point sample. We analyze this diffusion process using recent results about the convergence of graph Laplacians. In the experiments we show that our method is capable of dealing with non-trivial high-dimensional noise. Moreover using the denoising algorithm as pre-processing method we can improve the results of a semi-supervised learning algorithm.

Details

show
hide
Language(s):
 Dates: 2007-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 4249
 Degree: -

Event

show
hide
Title: Twentieth Annual Conference on Neural Information Processing Systems (NIPS 2006)
Place of Event: Vancouver, BC, Canada
Start-/End Date: 2006-12-04 - 2006-12-07

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Neural Information Processing Systems 19
Source Genre: Proceedings
 Creator(s):
Schölkopf, B1, Editor            
Platt, JC, Editor
Hoffman, T, Editor
Affiliations:
1 Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795            
Publ. Info: Cambridge, MA, USA : MIT Press
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 561 - 568 Identifier: ISBN: 0-262-19568-2