English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Physical Self-Motion Facilitates Object Recognition, but Does Not Enable View-Independence

Teramoto, W., & Riecke, B. (2007). Physical Self-Motion Facilitates Object Recognition, but Does Not Enable View-Independence. Poster presented at 10th Tübinger Wahrnehmungskonferenz (TWK 2007), Tübingen, Germany.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Teramoto, W1, 2, Author           
Riecke, BE1, 2, Author           
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: It is well known that people have difficulties in recognizing an object from novel views as
compared to learned views, resulting in increased response times and/or errors. This so-called
view-dependency has been confirmed by many studies. In the natural environment, however,
there are two ways of changing views of an object: one is to rotate an object in front of a
stationary observer (object-movement), the other is for the observer to move around a stationary
object (observer-movement). Simons et al. [1] criticized previous studies in this regard
and examined the difference between object- and observer-movement directly. As a result,
Simons et al. reported the elimination of this view-dependency when novel views resulted
from observer-movement, instead of object-movement. They suggest the contribution of extraretinal
(vestibular and proprioceptive) information to object recognition. Recently, however,
Zhao et al. [2] reported that the observer’s movement from one view to another only decreased
view-dependency without fully eliminating it. Furthermore, even this effect vanished for rotations
of 90 instead of 50. The aim of the present study was to confirm the phenomenon
in our virtual reality environment and to clarify the underlying mechanism further by using
larger angles of view change (45-180, in 45 steps). Two experiments were conducted using
an eMagin Z800 3D Visor head-mounted display that was tracked by 16 Vicon MX 13 motion
capture cameras. Observers performed sequential-matching tasks. Five novel objects and
five mirror-reversed versions of these objects were created by smoothing the edges of Shepard-
Metzler’s objects. A mirror-reflected version of the learned object was used as a distractor in
Experiment 1 (N=13), whereas one of the other (i.e., not mirror-reversed) objects was randomly
selected on each trial as a distractor in Experiment 2 (N=15). Test views of the objects were
manipulated either by viewer or object movement. Both experiments showed a significant overall
advantage of viewer movements over object movements. Note, however, that performance
was still viewpoint-dependent. These results suggest an involvement of partially advantageous
and cost-effective transformation mechanisms, but not a complete automatic spatial-updating
mechanism as proposed by Simons et al. [1], when observers move.

Details

show
hide
Language(s):
 Dates: 2007-07
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 4887
 Degree: -

Event

show
hide
Title: 10th Tübinger Wahrnehmungskonferenz (TWK 2007)
Place of Event: Tübingen, Germany
Start-/End Date: 2007-07-27 - 2007-07-29

Legal Case

show

Project information

show

Source 1

show
hide
Title: 10th Tübinger Perception Conference: TWK 2007
Source Genre: Proceedings
 Creator(s):
Bülthoff, HH1, Editor           
Chatziastros, A1, Editor           
Mallot, HA, Editor           
Ulrich, R, Editor
Affiliations:
1 Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797            
Publ. Info: Kirchentellinsfurt, Germany : Knirsch
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 118 Identifier: ISBN: 3-927091-77-4