English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Temporal calibration between the visual, auditory and tactile senses: A psychophysical approach

Machulla, T., Di Luca, M., & Ernst, M. (2007). Temporal calibration between the visual, auditory and tactile senses: A psychophysical approach. Poster presented at 1st Peach Summer School, Santorini, Greece.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Machulla, T1, 2, Author           
Di Luca, M1, 2, 3, Author           
Ernst, M1, 2, Author           
Affiliations:
1Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497806              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

Content

show
hide
Free keywords: -
 Abstract: Human observers acquire information about physical properties of the environment through different sensory
modalities. For natural events, these sensory signals show a specific temporal, spatial and contextual configuration that
aids the integration into a coherent multisensory percept. For multimodal virtual environments, however, signals have
to be created and displayed separately for different modalities, which may result in a miscalibration of these signals.
This, in turn, can greatly reduce the observer’s sense of immersion and presence.
Using psychophysical methods, we investigate fundamental questions regarding how the temporal alignment of signals
from the visual, auditory and tactile modalities is achieved. A first project examines the perception of subjective
simultaneity of signals. Simultaneity detection poses a non-trivial matching problem to the human brain: physical and
neural transmission times differ greatly between the senses. As there is only partial compensation for these differential
delays, subjective simultaneity may result from presenting stimuli with a physical delay. Here, we are interested in
whether this phenomenon reflects an amodal timing mechanism that works across all modalities in a uniform fashion.
Further, we look at the sensitivity for asynchrony detection for different modality pairs as well as at interindividual
differences.
In a second project, we examine the ability of the human cognitive system to adapt to asynchronous information in
different modalities. Adaptation may be used to reduce the disruptive effects of temporal miscalibration between
signals in different modalities. We are interested in the strength of adaptation as well as the mechanism underlying this
effect.
Future projects aim at the investigation of
- the precise relationship between the perception of synchrony and multimodal integration,
- the influence of prior knowledge about a common origin of signals on the perception of synchrony
- the influence of timing on the perception of cause and effect
- the neural basis of the detection of synchrony
In conclusion, our research seeks to understand the mechanisms underlying temporal calibration between different
sensory modalities with the goal to identify factors that foster multimodal integration and, in turn, the sense of
presence.

Details

show
hide
Language(s):
 Dates: 2007-07
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 4684
 Degree: -

Event

show
hide
Title: 1st Peach Summer School
Place of Event: Santorini, Greece
Start-/End Date: 2007-07-04 - 2007-07-06

Legal Case

show

Project information

show

Source 1

show
hide
Title: 1st Peach Summer School: Presence: towards human machine confluence
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 36 - 37 Identifier: -