Help Privacy Policy Disclaimer
  Advanced SearchBrowse


  The Effect of Gaze Direction and Field-Of-View on Speed Constancy

Pretto, P., Vidal, M., & Chatziastros, A. (2007). The Effect of Gaze Direction and Field-Of-View on Speed Constancy. Poster presented at 10th Tübinger Wahrnehmungskonferenz (TWK 2007), Tübingen, Germany.

Item is


show Files




Pretto, P1, 2, Author              
Vidal, M, Author              
Chatziastros, A1, 2, Author              
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              


Free keywords: -
 Abstract: During linear self-motion at constant speed, the retinal speeds of stationary objects vary as a function of their declination angle (the angle between the line of sight and the horizontal plane). Nevertheless, when we move in our environment, we do not feel that different places move at different speeds: a compensation mechanism is thought to mediate between angular velocity and perceived linear speed so that velocity constancy is achieved. In a recent study [1] it has been shown that the perceived speed is altered when driving with a reduced fieldof- view (FOV). The explanation proposed in that study leads us to the hypothesis that, when moving at constant speed, humans might not be able to compensate for the different velocity signals coming from various declination angles when only a limited portion of the visual field is visible. Here we tested this hypothesis using a Virtual Reality (VR) setup that provides a 230×125 (H×V) FOV. We measured the visual perceived speed at eye-height (1.7m) while simulating fast walking speeds on a virtual open field. We manipulated the FOV (full field vs. limited field corresponding to an aperture of 40×6) and the gaze declination angle (12, 20 and 28 degrees), corresponding to positions on the plane located at a distance of 8, 4.7, and 3.2 m, respectively. We used a two alternative forced choice (2AFC) with constant stimuli method in a 2×3 within subjects design. We tested eight different speeds ranging from 0.67 to 6 m/s. The reference stimulus appeared always in the intermediate declination angle at the speed of 2 m/s. A fixation cross appeared at the desired declination angle 500 ms before each stimulus. At every trial, subjects had to select which of the two presented stimuli indicated a faster linear forward speed. The results of four observers show that when looking with a different declination angle in the test, the perceived speed appeared either higher or lower than the reference speed. This effect was accentuated in the limited FOV condition, suggesting that limiting the FOV impairs the compensation mechanism. Interestingly, while two observers could not fully compensate for the perceived retinal speed even within a full FOV condition, the other two showed a reliable over-compensation independently of the FOV. This indicates that a veridical speed estimation cannot be achieved in VR and with limited FOV and that speed estimation is not independent of gaze direction.


 Dates: 2007-07
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 4891
 Degree: -


Title: 10th Tübinger Wahrnehmungskonferenz (TWK 2007)
Place of Event: Tübingen, Germany
Start-/End Date: 2007-07-27 - 2007-07-29

Legal Case


Project information


Source 1

Title: 10th Tübinger Perception Conference: TWK 2007
Source Genre: Proceedings
Bülthoff, HH1, Editor            
Chatziastros, A1, Editor            
Mallot, HA, Editor            
Ulrich, R, Editor
1 Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797            
Publ. Info: Kirchentellinsfurt, Germany : Knirsch
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 154 Identifier: ISBN: 3-927091-77-4