Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Reinforcement learning by reward-weighted regression for operational space control

Peters, J., & Schaal, S. (2007). Reinforcement learning by reward-weighted regression for operational space control. In Z. Ghahramani (Ed.), ICML '07: 24th International Conference on Machine Learning (pp. 745-750). New York, NY, USA: ACM Press.

Item is

Dateien

ausblenden: Dateien
:
ICML-2007-Peters.pdf (beliebiger Volltext), 399KB
Name:
ICML-2007-Peters.pdf
Beschreibung:
-
OA-Status:
Sichtbarkeit:
Öffentlich
MIME-Typ / Prüfsumme:
application/pdf / [MD5]
Technische Metadaten:
Copyright Datum:
-
Copyright Info:
-
Lizenz:
-

Externe Referenzen

ausblenden:
externe Referenz:
https://dl.acm.org/citation.cfm?doid=1273496.1273590 (Verlagsversion)
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Peters, J1, 2, Autor           
Schaal, S, Autor           
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Many robot control problems of practical importance, including operational space control, can be reformulated as immediate reward reinforcement learning problems. However, few of the known optimization or reinforcement learning algorithms can be used in online learning control for robots, as they are either prohibitively slow, do not scale to interesting domains of complex robots, or require trying out policies generated by random search, which are infeasible for a physical system. Using a generalization of the EM-base reinforcement learning framework suggested by Dayan amp;amp;amp;amp; Hinton, we reduce the problem of learning with immediate rewards to a reward-weighted regression problem with an adaptive, integrated reward transformation for faster convergence. The resulting algorithm is efficient, learns smoothly without dangerous jumps in solution space, and works well in applications of complex high degreeof-freedom robots.

Details

ausblenden:
Sprache(n):
 Datum: 2007-06
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1145/1273496.1273590
BibTex Citekey: 4493
 Art des Abschluß: -

Veranstaltung

ausblenden:
Titel: 24th Annual International Conference on Machine Learning (ICML 2007)
Veranstaltungsort: Corvallis, OR, USA
Start-/Enddatum: 2007-06-20 - 2007-06-24

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: ICML '07: 24th International Conference on Machine Learning
Genre der Quelle: Konferenzband
 Urheber:
Ghahramani, Z, Herausgeber
Affiliations:
-
Ort, Verlag, Ausgabe: New York, NY, USA : ACM Press
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 745 - 750 Identifikator: ISBN: 978-1-59593-793-3