English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
 
 
DownloadE-Mail
  Eye movements for active learning of objects

Tanner, T., Fleming, R., & Bülthoff, H. (2007). Eye movements for active learning of objects. Poster presented at 7th Annual Meeting of the Vision Sciences Society (VSS 2007), Sarasota, FL, USA.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-CD79-B Version Permalink: http://hdl.handle.net/21.11116/0000-0004-0233-0
Genre: Poster

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Tanner, TG1, 2, Author              
Fleming, R1, 2, 3, Author              
Bülthoff, HH1, 2, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              

Content

show
hide
Free keywords: -
 Abstract: We investigated how humans use eye movements to direct their attention to informative features in a categorization task. More specifically, we test the hypothesis that eye movements are influenced by prior knowledge about a task and by information gathered in previous fixations. Our novel stimuli, which belonged to either one of two probabilistic classes, were large circular contours with several regular perturbations at which the curvature was varied as a continous feature dimension. With this design the spatial separation of single features generally required several closer fixations to make a confident decision about class membership. Each feature value varied stochastically from trial to trial according to a characteristic distribution for each category (external noise). The features were independent and varied in diagnosticity. Subjects had to learn the categories by using immediate feedback about the true category after each trial (4 subjects, 10 sessions of 250 trials). We estimated the internal noise, which was much smaller then the external noise, based on an independent experiment measuring curvature discrimination performance for different eccentricites (0–12°), finding approx. linear decrease in sensitivity with increasing curvature. The subjects were able to learn to discriminate the categories (avg. performance for ideal observer vs. subjects was 0.82 vs 0.68). Trial by trial fluctations in performance follow the ideal observer (MAE 0.32). With increasing expertise reaction times became shorter and fixations became more focused, possibly reflecting the subjects' belief about relevant features. We compare the results with Bayesian learner models which take into account the peripheral fall-off in discriminability, while directing their attention to the currently most informative features.

Details

show
hide
Language(s):
 Dates: 2007-06
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/7.9.22
BibTex Citekey: 4923
 Degree: -

Event

show
hide
Title: 7th Annual Meeting of the Vision Sciences Society (VSS 2007)
Place of Event: Sarasota, FL, USA
Start-/End Date: 2007-05-11 - 2007-05-16

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 7 (9) Sequence Number: - Start / End Page: 22 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050