English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  How long does it take to adjust a weight?

Ernst, M., Di Luca, M., & Knill, D. (2007). How long does it take to adjust a weight?. Poster presented at 7th Annual Meeting of the Vision Sciences Society (VSS 2007), Sarasota, FL, USA.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Ernst, M1, 2, Author           
Di Luca, M1, 2, 3, Author           
Knill, D, Author
Affiliations:
1Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497806              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

Content

show
hide
Free keywords: -
 Abstract: Cue integration has been demonstrated to be close to optimal under temporally constant stimulus conditions. That is, cues are assigned different weights according to their relative reliabilities. In real-world situations, however, stimulus conditions constantly change. For example, depending on the viewing situation the reliability of cues may change over time. Here we ask whether the system takes such continuous changes in reliability into account by adjusting the cue weights online. Subjects were binocularly presented with a spinning disk slanted in depth. Thus one cue was disparity, the other motion. There was a ±30 deg conflict between the slants defined by the two cues. We varied the reliability of the motion cue by sinusoidally changing the speed of rotation at different frequencies (0.067, 0.1, 0.2 Hz). Decreasing the speed of rotation decreases the reliability of the motion cue. However, it does not affect the magnitude of slant specified by the motion cue. Subjects task was to continuously adjust the angle of a two-lines probe according to the perceived slant. We found that increasing the motion cue reliability with faster rotations biased perceived slant towards the slant defined by the motion cue. The surface was therefore perceived to oscillate in depth according to the modulation of speed. The oscillation amplitude decreased with higher modulation frequency. The phase shift between rotation modulation and perceived oscillation increased with frequency. As a control, we repeated the task in order to estimate subject's reaction time for adjusting the probe. In this control the slant of the surface was actually oscillating in depth. By subtracting the reaction time from the phase shifts obtained in the experimental conditions we estimated that the time it takes to update the weights is less then a second.

Details

show
hide
Language(s):
 Dates: 2007-06
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/7.9.92
BibTex Citekey: 4516
 Degree: -

Event

show
hide
Title: 7th Annual Meeting of the Vision Sciences Society (VSS 2007)
Place of Event: Sarasota, FL, USA
Start-/End Date: 2007-05-11 - 2007-05-16

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 7 (9) Sequence Number: - Start / End Page: 92 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050