English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Integration of alternating cues to slant

Di Luca, M., & Ernst, M. (2007). Integration of alternating cues to slant. Poster presented at 7th Annual Meeting of the Vision Sciences Society (VSS 2007), Sarasota, FL, USA.

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Di Luca, M1, 2, 3, Author              
Ernst, M1, 3, Author              
Affiliations:
1Research Group Multisensory Perception and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497806              
2Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
3Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Several studies showed that cue integration is close to optimal when two or more cues are available simultaneously. However, most of these studies consider only constant cues. Here we investigate how different depth cues interact when they are not presented simultaneously but they are alternating. We ask whether there is fusion of cues in time and how the interaction between cues depends on the frequency of alternation. To study this, we presented two surfaces in alternation at six different frequencies (from 0.8 to 15 Hz). One surface was defined by a random-dot pattern displayed in stereo (disparity-defined surface); the other was defined by a monocularly viewed regular texture (texture-defined surface). The angle between the two surfaces was always +20 or −20 degrees. Participants had to indicate whether the texture-defined surface was slanted to the left or to the right. The orientation of the two surfaces was varied jointly using a double staircase procedure to find the orientation at which the texture-defined surface appeared frontoparallel. Results indicate that there is a significant interaction between the cues depending on frequency. That is, the orientation of the stimulus needed to see the texture-defined surface as frontoparallel depended on the sign of conflict and the frequency of alternation. At high frequencies (above 6 Hz) there was a perceptual bias of the texture-defined surface in the direction of the disparity-defined surface, indicating integration of the signals. At low frequency (0.8 Hz), however, this interaction did not only disappear, it reversed in the opposite direction, indicating a contrast effect. This contrast may be explained as an aftereffect resulting from adaptation to the disparity-cue slant. We conclude that simultaneity between cues is not necessary for integration to occur. There seems to be a temporal window for integration in the order of 150 ms.

Details

show
hide
Language(s):
 Dates: 2007-06
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/7.9.90
BibTex Citekey: 4515
 Degree: -

Event

show
hide
Title: 7th Annual Meeting of the Vision Sciences Society (VSS 2007)
Place of Event: Sarasota, FL, USA
Start-/End Date: 2007-05-11 - 2007-05-16

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 7 (9) Sequence Number: - Start / End Page: 90 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050