English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Large Scale Transductive SVMs

Collobert, R., Sinz, F., Weston, J., & Bottou, L. (2006). Large Scale Transductive SVMs. The Journal of Machine Learning Research, 7, 1687-1712.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-D08D-E Version Permalink: http://hdl.handle.net/21.11116/0000-0004-836C-F
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Collobert, R, Author
Sinz, F1, 2, Author              
Weston, J, Author              
Bottou, L, Author
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: We show how the Concave-Convex Procedure can be applied to the optimization of Transductive SVMs, which traditionally requires solving a combinatorial search problem. This provides for the first time a highly scalable algorithm in the nonlinear case. Detailed experiments verify the utility of our approach.

Details

show
hide
Language(s):
 Dates: 2006-08
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: BibTex Citekey: 3765
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: The Journal of Machine Learning Research
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, MA : MIT Press
Pages: - Volume / Issue: 7 Sequence Number: - Start / End Page: 1687 - 1712 Identifier: ISSN: 1532-4435
CoNE: https://pure.mpg.de/cone/journals/resource/111002212682020_1