Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Large Scale Multiple Kernel Learning

Sonnenburg, S., Rätsch, G., Schäfer, C., & Schölkopf, B. (2006). Large Scale Multiple Kernel Learning. The Journal of Machine Learning Research, 7, 1531-1565.

Item is

Basisdaten

einblenden: ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

einblenden:
ausblenden:
Beschreibung:
-
OA-Status:
Keine Angabe

Urheber

einblenden:
ausblenden:
 Urheber:
Sonnenburg, S, Autor           
Rätsch, G1, Autor           
Schäfer, C, Autor
Schölkopf, B2, 3, Autor           
Affiliations:
1Friedrich Miescher Laboratory, Max Planck Society, Max-Planck-Ring 9, 72076 Tübingen, DE, ou_2575692              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
3Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: While classical kernel-based learning algorithms are based on a single kernel, in practice it is often desirable to use multiple kernels. Lanckriet et al. (2004) considered conic combinations of kernel matrices for classification, leading to a convex quadratically constrained quadratic program. We
show that it can be rewritten as a semi-infinite linear program that can be efficiently solved by recycling the standard SVM implementations. Moreover, we generalize the formulation and our method to a larger class of problems, including regression and one-class classification. Experimental results show that the proposed algorithm works for hundred thousands of examples or hundreds of
kernels to be combined, and helps for automatic model selection, improving the interpretability of
the learning result. In a second part we discuss general speed up mechanism for SVMs, especially
when used with sparse feature maps as appear for string kernels, allowing us to train a string kernel
SVM on a 10 million real-world splice data set from computational biology. We integrated multiple kernel learning in our machine learning toolbox SHOGUN for which the source code is publicly
available at http://www.fml.tuebingen.mpg.de/raetsch/projects/shogun.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2006-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: 3994
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: The Journal of Machine Learning Research
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Cambridge, MA : MIT Press
Seiten: - Band / Heft: 7 Artikelnummer: - Start- / Endseite: 1531 - 1565 Identifikator: ISSN: 1532-4435
CoNE: https://pure.mpg.de/cone/journals/resource/111002212682020_1