English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Inference with the Universum

Weston, J., Collobert, R., Sinz, F., Bottou, L., & Vapnik, V. (2006). Inference with the Universum. In W. Cohen, & A. Moore (Eds.), ICML '06: Proceedings of the 23rd International Conference on Machine Learning (pp. 1009-1016). New York, NY, USA: ACM Press.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-D139-2 Version Permalink: http://hdl.handle.net/21.11116/0000-0006-C57C-1
Genre: Conference Paper

Files

show Files
hide Files
:
ICML-2006-Weston.pdf (Any fulltext), 393KB
Name:
ICML-2006-Weston.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Weston, J, Author              
Collobert, R, Author
Sinz, F1, 2, Author              
Bottou, L, Author
Vapnik, V, Author              
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497795              

Content

show
hide
Free keywords: -
 Abstract: WIn this paper we study a new framework introduced by Vapnik (1998) and Vapnik (2006) that is an alternative capacity concept to the large margin approach. In the particular case of binary classification, we are given a set of labeled examples, and a collection of "non-examples" that do not belong to either class of interest. This collection, called the Universum, allows one to encode prior knowledge by representing meaningful concepts in the same domain as the problem at hand. We describe an algorithm to leverage the Universum by maximizing the number of observed contradictions, and show experimentally that this approach delivers accuracy improvements over using labeled data alone.

Details

show
hide
Language(s):
 Dates: 2006-06
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1145/1143844.1143971
BibTex Citekey: 3916
 Degree: -

Event

show
hide
Title: 23rd International Conference on Machine Learning (ICML 2006)
Place of Event: Pittsburgh, PA, USA
Start-/End Date: 2006-06-25 - 2006-06-29

Legal Case

show

Project information

show

Source 1

show
hide
Title: ICML '06: Proceedings of the 23rd International Conference on Machine Learning
Source Genre: Proceedings
 Creator(s):
Cohen, W, Editor
Moore, A, Editor
Affiliations:
-
Publ. Info: New York, NY, USA : ACM Press
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 1009 - 1016 Identifier: ISBN: 1-59593-383-2