English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Object Classification using Local Image Features

Nowozin, S. (2006). Object Classification using Local Image Features. Diploma Thesis, Technical University of Berlin, Berlin, Germany.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Nowozin, S1, Author           
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Object classification in digital images remains one of the most challenging tasks in computer vision. Advances in the last decade have produced methods to repeatably extract and describe characteristic local features in natural images. In order to apply machine learning techniques in computer vision systems, a representation based on these features is needed. A set of local features is the most popular representation and often used in conjunction with Support Vector Machines for classification problems. In this work, we examine current approaches based on set representations and identify their shortcomings. To overcome these shortcomings, we argue for extending the set representation into a graph representation, encoding more relevant information. Attributes associated with the edges of the graph encode the geometric relationships between individual features by making use of the meta data of each feature, such as the position, scale, orientation and shape of the feature region. At the same time all invariances provided by the original feature extraction method are retained. To validate the novel approach, we use a standard subset of the ETH-80 classification benchmark.

Details

show
hide
Language(s):
 Dates: 2006-05-082006-05
 Publication Status: Published in print
 Pages: 100
 Publishing info: Berlin, Germany : Technical University of Berlin
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 4064
 Degree: Diploma

Event

show

Legal Case

show

Project information

show

Source

show