English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Numerical Simulations of Intra-voxel Dephasing Effects and Signal Voids in Gradient Echo MR Imaging using different Sub-grid Sizes

Müller-Bierl, B., Graf H, Pereira, P., & Schick, F. (2006). Numerical Simulations of Intra-voxel Dephasing Effects and Signal Voids in Gradient Echo MR Imaging using different Sub-grid Sizes. Magnetic Resonance Materials in Physics, Biology and Medicine, 19(2), 88-95. doi:10.1007/s10334-006-0031-5.

Item is

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Müller-Bierl, BM1, Author           
Graf H, Pereira, PL, Author
Schick, F, Author
Affiliations:
1Department High-Field Magnetic Resonance, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497796              

Content

show
hide
Free keywords: -
 Abstract: Signal void artifacts in gradient echo imaging are caused by the intra-voxel dephasing of the spins. Intra-voxel dephasing can be estimated by computing the field distribution on a sub-grid inside each picture element, followed by integration of all magnetization components. The strategy of computing the artifacts based on the integration of the sub-voxel signal components is presented here for different sub-grids. The coarseness of the sub-grid is directly related to computational effort. The possibility to save memory space and computing time for the dipole model by computing the field only on a sub-grid is addressed in the presented article. It is investigated as to how far computational time and memory space can be reduced by using an appropriate sub-grid. Numerical results for a model of a partially diamagnetically coated needle shaft are compared to experimental findings. In the case of a pure titanium needle, it is shown as being sufficient to compute the field distribution on a sub-grid that is at least four times coarser in each direction than the grid used to discretize the object in the related MR image. Due to three nested loops over the 3D grid, the need for memory space and time is saved by a factor 64. Deviations between measurements and simulations for the broad side of the artifact (uncompensated) and for the small side of the artifact (compensated) were 15.5, respectively, 19.1 for orientation parallel to the exterior field, and 22.7, respectively, 23.1 for orientation perpendicular to the exterior field.

Details

show
hide
Language(s):
 Dates: 2006-05
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Magnetic Resonance Materials in Physics, Biology and Medicine
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 19 (2) Sequence Number: - Start / End Page: 88 - 95 Identifier: -