English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Evaluating Predictive Uncertainty Challenge

Quinonero Candela, J., Rasmussen, C., Sinz, F., Bousquet, O., & Schölkopf, B. (2006). Evaluating Predictive Uncertainty Challenge. In J. Quiñonero-Candela, I. Dagan, B. Magnini, & F. d’Alché-Buc (Eds.), Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment: First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005 (pp. 1-27). Berlin, Germany: Springer.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-D239-9 Version Permalink: http://hdl.handle.net/21.11116/0000-0006-C57B-2
Genre: Conference Paper

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Quinonero Candela, J1, 2, Author              
Rasmussen, CE1, 2, Author              
Sinz, F1, 2, Author              
Bousquet, O1, 2, Author              
Schölkopf, B1, 2, Author              
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: This Chapter presents the PASCAL Evaluating Predictive Uncertainty Challenge, introduces the contributed Chapters by the participants who obtained outstanding results, and provides a discussion with some lessons to be learnt. The Challenge was set up to evaluate the ability of Machine Learning algorithms to provide good “probabilistic predictions”, rather than just the usual “point predictions” with no measure of uncertainty, in regression and classification problems. Parti-cipants had to compete on a number of regression and classification tasks, and were evaluated by both traditional losses that only take into account point predictions and losses we proposed that evaluate the quality of the probabilistic predictions.

Details

show
hide
Language(s):
 Dates: 2006-04
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/11736790_1
BibTex Citekey: 3924
 Degree: -

Event

show
hide
Title: First PASCAL Machine Learning Challenges Workshop (MLCW 2005)
Place of Event: Southampton, UK
Start-/End Date: 2005-04-11 - 2005-04-13

Legal Case

show

Project information

show

Source 1

show
hide
Title: Machine Learning Challenges. Evaluating Predictive Uncertainty, Visual Object Classification, and Recognising Tectual Entailment: First PASCAL Machine Learning Challenges Workshop, MLCW 2005, Southampton, UK, April 11-13, 2005
Source Genre: Proceedings
 Creator(s):
Quiñonero-Candela, J, Editor
Dagan, I, Editor
Magnini, B, Editor
d’Alché-Buc, F, Editor
Affiliations:
-
Publ. Info: Berlin, Germany : Springer
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 1 - 27 Identifier: ISBN: 978-3-540-33427-9

Source 2

show
hide
Title: Lecture Notes in Computer Science
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 3944 Sequence Number: - Start / End Page: - Identifier: -