English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  fMRI of Macaque Auditory Cortex in Awake and in Anesthetized Animals

Petkov, C., Kayser, C., Augath, M., Steudel, T., & Logothetis, N. (2005). fMRI of Macaque Auditory Cortex in Awake and in Anesthetized Animals. Poster presented at 35th Annual Meeting of the Society for Neuroscience (Neuroscience 2005), Washington, DC, USA.

Item is

Files

show Files
hide Files
:
Neuroscience-2005-Petkov.pdf (Any fulltext), 10MB
Name:
Neuroscience-2005-Petkov.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Petkov, CI1, 2, Author              
Kayser, C1, 2, Author              
Augath, M1, 2, Author              
Steudel, T1, 2, Author              
Logothetis, NK1, 2, Author              
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Functional magnetic resonance imaging (fMRI) with non-human primates is invaluable because localized patterns of activity can guide subsequent neurophysiological recordings. However, it is unknown whether fMRI of the macaque monkey can reveal reliable auditory activations consistent with known properties of primate auditory cortical fields (ACFs). We used high-field (4.7- and 7-Tesla) fMRI to image the blood-oxygen level dependent response (BOLD) of auditory cortex in awake and in anesthetized macaques. For awake-animal imaging we trained a macaque to complete long duration trials of visual fixation in combination with minimal body movement. Scanning this animal at 7T during sound presentation revealed robust activity over auditory cortex in the superior temporal plane. A paradigm where stimulation alternated with image acquisition revealed greater auditory activity than continuous imaging where sound stimulation must compete with the scanner noise. Imaging data with more extensive sound stimulation was obtained from anesthetized animals since these experiments allow for quicker data acquisition. Here, we used sounds varying in center frequency and bandwidth as have neurophysiological experiments mapping the basic organizational properties of macaque ACFs. In the antero-posterior direction, regions within the lateral sulcus were selective for sounds with low and high center frequencies, revealing expected frequency selective gradients (tonotopy) with multiple mirror reversals of these gradients. In comparison to tonal stimulation, sounds with greater spectral bandwidth activated more lateral and medial portions of the superior temporal plane, consistent with this activity occurring over non-primary ACFs. In summary, high-field fMRI reveals the global organization of macaque auditory cortex and will be important for helping us to understand how the primate auditory cortex is functionally organized.

Details

show
hide
Language(s):
 Dates: 2005-11
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 3539
 Degree: -

Event

show
hide
Title: 35th Annual Meeting of the Society for Neuroscience (Neuroscience 2005)
Place of Event: Washington, DC, USA
Start-/End Date: 2005-11-12 - 2005-11-16

Legal Case

show

Project information

show

Source 1

show
hide
Title: 35th Annual Meeting of the Society for Neuroscience (Neuroscience 2005)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 851.5 Start / End Page: - Identifier: -