English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Differences in processing of 3-D shape from multiple cues in monkey cortex revealed by fMRI

Sereno, M., Augath, M., & Logotethis, N. (2005). Differences in processing of 3-D shape from multiple cues in monkey cortex revealed by fMRI. In 35th Annual Meeting of the Society for Neuroscience (Neuroscience 2005).

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-D3D9-A Version Permalink: http://hdl.handle.net/21.11116/0000-0005-40D8-F
Genre: Meeting Abstract

Files

show Files

Creators

show
hide
 Creators:
Sereno, ME1, 2, Author              
Augath, M1, 2, Author              
Logotethis, NK1, 2, Author              
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Previous work using fMRI in anesthetized monkeys to investigate the representation of 3-D objects and surfaces suggests a set of candidate areas in monkey cortex for cue-invariant 3-D shape processing (Sereno et al., Neuron, 2002). The present study examines activation overlap for 3-D surface shape defined with 3 different cues by directly comparing activation for the same 3-D shapes in the same monkey subjects. Stimuli consisted of a set of 3-D surfaces defined by dynamic (random dots with motion parallax) and static (shading and contour) shape cues. Each shape defined by a particular cue was paired with a control stimulus consisting of a scrambled or disrupted cue gradient to diminish or abolish an impression of depth. Activation from a comparison of intact to control stimuli revealed regions of common activation (e.g., in superior temporal and intra-parietal sulci) for shape defined by the 3 different cues. However, significant differences between the dynamic and static cues emerged. The extent and strength of activation was greater in area MT for dynamic compared to static cues; whereas the opposite was true in area V4. In addition, while there was significant overlap across the cues in regions of the STS anterior to area MT (FST and mid-anterior STS), in each of these regions there was a greater number of voxels active for shape-from-motion stimuli in the fundus vs. the more lateral aspect of the ventral bank. In turn, the lateral aspect of the ventral bank had a greater number of voxels active for shape-from-shading and -contour compared to shape-from-motion stimuli. Between the regions activated primarily by dynamic or static cues there was a region of convergence activated by all the cues.

Details

show
hide
Language(s):
 Dates: 2005-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: SerenoAL2005
 Degree: -

Event

show
hide
Title: 35th Annual Meeting of the Society for Neuroscience (Neuroscience 2005)
Place of Event: Washington, DC, USA
Start-/End Date: 2005-11-12 - 2005-11-16

Legal Case

show

Project information

show

Source 1

show
hide
Title: 35th Annual Meeting of the Society for Neuroscience (Neuroscience 2005)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 362.9 Start / End Page: - Identifier: -