English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Learning features of intermediate complexity for the recognition of biological motion

Sigala, R., Serre, T., Poggio, T., & Giese, M. (2005). Learning features of intermediate complexity for the recognition of biological motion. In W. Duch, J. Kacprzyk, E. Oja, & S. Zadrożny (Eds.), Artificial Neural Networks: Biological Inspirations: ICANN 2005 15th International Conference, Warsaw, Poland, September 11-15, 2005 (pp. 241-246). Berlin, Germany: Springer.

Item is

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Sigala, R1, Author              
Serre , T, Author
Poggio, T1, Author              
Giese, M1, Author              
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Humans can recognize biological motion from strongly impoverished stimuli, like point-light displays. Although the neural mechanism underlying this robust perceptual process have not yet been clarified, one possible explanation is that the visual system extracts specific motion features that are suitable for the robust recognition of both normal and degraded stimuli. We present a neural model for biological motion recognition that learns robust mid-level motion features in an unsupervised way using a neurally plausible memory-trace learning rule. Optimal mid-level features were learnt from image motion sequences containing a walker with, or without background motion clutter. After learning of the motion features, the detection performance of the model substantially increases, in particular in presence of clutter. The learned mid-level motion features are characterized by horizontal opponent motion, where this feature type arises more frequently for the training stimuli without motion clutter. The learned features are consistent with recent psychophysical data that indicates that opponent motion might be critical for the detection of point light walkers.

Details

show
hide
Language(s):
 Dates: 2005-09
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1007/11550822_39
BibTex Citekey: 5537
 Degree: -

Event

show
hide
Title: 15th International Conference on Artificial Neural Networks (ICANN 2005)
Place of Event: Warsaw, Poland
Start-/End Date: 2005-09-11 - 2005-09-15

Legal Case

show

Project information

show

Source 1

show
hide
Title: Artificial Neural Networks: Biological Inspirations: ICANN 2005 15th International Conference, Warsaw, Poland, September 11-15, 2005
Source Genre: Proceedings
 Creator(s):
Duch, W, Editor
Kacprzyk, J, Editor
Oja, E, Editor
Zadrożny, S, Editor
Affiliations:
-
Publ. Info: Berlin, Germany : Springer
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 241 - 246 Identifier: ISBN: 978-3-540-28752-0

Source 2

show
hide
Title: Lecture Notes in Computer Science
Source Genre: Series
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: 3696 Sequence Number: - Start / End Page: - Identifier: -