日本語
 
Help Privacy Policy ポリシー/免責事項
  詳細検索ブラウズ

アイテム詳細

  A binocular rivalry study of motion perception in the human brain

Moutoussis, K., Keliris, G., Kourtzi, Z., & Logothetis, N. (2005). A binocular rivalry study of motion perception in the human brain. Vision Research, 45(17), 2231-2243. doi:10.1016/j.visres.2005.02.007.

Item is

基本情報

表示: 非表示:
資料種別: 学術論文

ファイル

表示: ファイル

作成者

表示:
非表示:
 作成者:
Moutoussis, K1, 2, 著者           
Keliris, GA1, 2, 著者           
Kourtzi, Z1, 2, 3, 著者           
Logothetis, NK1, 2, 著者           
所属:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              
3Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

内容説明

表示:
非表示:
キーワード: -
 要旨: The relationship between brain activity and conscious visual experience is central to our understanding of the neural mechanisms underlying perception. Binocularrivalry, where monocular stimuli compete for perceptual dominance, has been previously used to dissociate the constant stimulus from the varying percept. We report here fMRI results from humans experiencing binocularrivalry under a dichoptic stimulation paradigm that consisted of two drifting random dot patterns with different motion coherence. Each pattern had also a different color, which both enhanced rivalry and was used for reporting which of the two patterns was visible at each time. As the perception of the subjects alternated between coherent motion and motion noise, we examined the effect that these alternations had on the strength of the MR signal throughout the brain. Our results demonstrate that motionperception is able to modulate the activity of several of the visual areas which are known to be involved in motion processing. More specifically, in addition to area V5 which showed the strongest modulation, a higher activity during the perception of motion than during the perception of noise was also clearly observed in areas V3A and LOC, and less so in area V3. In previous studies, these areas had been selectively activated by motion stimuli but whether their activity reflects motionperception or not remained unclear; here we show that they are involved in motionperception as well. The present findings therefore suggest a lack of a clear distinction between ‘processing’ versus ‘perceptual’ areas in the brain, but rather that the areas involved in the processing of a specific visual attribute are also part of the neuronal network that is collectively responsible for its perceptual representation.

資料詳細

表示:
非表示:
言語:
 日付: 2005-08
 出版の状態: 出版
 ページ: -
 出版情報: -
 目次: -
 査読: -
 識別子(DOI, ISBNなど): DOI: 10.1016/j.visres.2005.02.007
BibTex参照ID: 3326
 学位: -

関連イベント

表示:

訴訟

表示:

Project information

表示:

出版物 1

表示:
非表示:
出版物名: Vision Research
  その他 : Vision Res.
種別: 学術雑誌
 著者・編者:
所属:
出版社, 出版地: Amsterdam : Pergamon
ページ: - 巻号: 45 (17) 通巻号: - 開始・終了ページ: 2231 - 2243 識別子(ISBN, ISSN, DOIなど): ISSN: 0042-6989
CoNE: https://pure.mpg.de/cone/journals/resource/954925451842