English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Low-Level Images Cues in the Perception of Translucent Materials

Fleming, R., & Bülthoff, H. (2005). Low-Level Images Cues in the Perception of Translucent Materials. ACM Transactions on Applied Perception, 2(3), 346-382. doi:10.1145/1077399.1077409.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-D50D-F Version Permalink: http://hdl.handle.net/21.11116/0000-0004-D7AD-7
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Fleming, R1, 2, 3, Author              
Bülthoff, HH2, 3, Author              
Affiliations:
1Research Group Computational Vision and Neuroscience, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497805              
2Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
3Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: When light strikes a translucent material (such as wax, milk or fruit flesh), it enters the body of the object, scatters and re-emerges from the surface. The diffusion of light through translucent materials gives them a characteristic visual softness and glow. What image properties underlie this distinctive appearance? What cues allow us to tell whether a surface is translucent or opaque? Previous work on the perception of semi-transparent materials was based on a very restricted physical model of thin filters [Metelli 1970; 1974a,b]. However, recent advances in computer graphics [Jensen et al. 2000; Jensen and Buhler 2002] allow us to efficiently simulate the complex sub-surface light transport effects that occur in real translucent objects. Here we use this model to study the perception of translucency, using a combination of psychophysics and image statistics. We find that many of the cues that were traditionally thought to be important for semi-transparent filters (e.g., X-junctions) are not relevant for solid translucent objects. We discuss the role of highlights, colour, object size, contrast, blur and lighting direction in the perception of translucency. We argue that the physics of translucency are too complex for the visual system to estimate intrinsic physical parameters by inverse optics. Instead, we suggest that we identify translucent materials by parsing them into key regions and by gathering image statistics from these regions.

Details

show
hide
Language(s):
 Dates: 2005-07
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1145/1077399.1077409
BibTex Citekey: 3465
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: ACM Transactions on Applied Perception
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York, NY : Association for Computing Machinery
Pages: - Volume / Issue: 2 (3) Sequence Number: - Start / End Page: 346 - 382 Identifier: ISSN: 1544-3558
CoNE: https://pure.mpg.de/cone/journals/resource/111056648028200