Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection

Tsuda, K., Rätsch, G., & Warmuth, M. (2005). Matrix Exponential Gradient Updates for On-line Learning and Bregman Projection. In L. Saul, Y. Weiss, & L. Bottou (Eds.), Advances in Neural Information Processing Systems 17 (pp. 1425-1432). Cambridge, MA, USA: MIT Press.

Item is

Externe Referenzen

einblenden:

Urheber

einblenden:
ausblenden:
 Urheber:
Tsuda, K1, Autor           
Rätsch, G1, Autor           
Warmuth, MK, Autor
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              

Inhalt

einblenden:
ausblenden:
Schlagwörter: -
 Zusammenfassung: We address the problem of learning a symmetric positive definite matrix. The central issue is to design parameter updates that preserve positive definiteness. Our updates are motivated with the von Neumann divergence. Rather than treating the most general case, we focus on two key applications that exemplify our methods: On-line learning with a simple square loss and finding a symmetric positive definite matrix subject to symmetric linear constraints. The updates generalize the Exponentiated Gradient (EG) update and AdaBoost, respectively: the parameter is now a symmetric positive definite matrix of trace one instead of a probability vector (which in this context is a diagonal positive definite matrix with trace one). The generalized updates use matrix logarithms and exponentials to preserve positive definiteness. Most importantly, we show how the analysis of each algorithm generalizes to the non-diagonal case. We apply both new algorithms, called the Matrix Exponentiated Gradient (MEG) update and DefiniteBoost, to learn a kernel matrix from distance measurements.

Details

einblenden:
ausblenden:
Sprache(n):
 Datum: 2005-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: BibTex Citekey: 2859
 Art des Abschluß: -

Veranstaltung

einblenden:
ausblenden:
Titel: Eighteenth Annual Conference on Neural Information Processing Systems (NIPS 2004)
Veranstaltungsort: Vancouver, BC, Canada
Start-/Enddatum: 2004-12-13 - 2004-12-16

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

einblenden:
ausblenden:
Titel: Advances in Neural Information Processing Systems 17
Genre der Quelle: Konferenzband
 Urheber:
Saul, LK, Herausgeber
Weiss, Y, Herausgeber
Bottou, L, Herausgeber
Affiliations:
-
Ort, Verlag, Ausgabe: Cambridge, MA, USA : MIT Press
Seiten: - Band / Heft: - Artikelnummer: - Start- / Endseite: 1425 - 1432 Identifikator: ISBN: 0-262-19534-8