English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Visual cues are used to interpret gravito-inertial force

MacNeilage, P., Berger, D., Banks, M., & Bülthoff, H. (2004). Visual cues are used to interpret gravito-inertial force. Poster presented at Fourth Annual Meeting of the Vision Sciences Society (VSS 2004), Sarasota, FL, USA.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
MacNeilage, PR, Author           
Berger, DR1, 2, Author           
Banks, M, Author           
Bülthoff, HH1, 2, Author           
Affiliations:
1Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              
2Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              

Content

show
hide
Free keywords: -
 Abstract: Humans use visual and non-visual cues to estimate body orientation and self-motion relative to gravity. Non-visual cues include forces acting on the body, which are signaled by the vestibular and somatosensory systems. These cues are ambiguous indicators of the direction of gravitational force because of Einstein's equivalence principle: any linear accelerometer measures the sum of forces. Thus, forces due to gravity and to acceleration are confounded. Visual cues to body orientation and self-motion relative to gravity could resolve the ambiguity. Optic flow is the primary visual cue to self-motion. It could be used to estimate self-acceleration, and thereby estimate the component of the vestibular-somatosensory signal caused by acceleration as opposed to gravity. Additional visual cues to body orientation include environmental features that have a fixed orientation with respect to gravity, such as the horizon. Using a 6-df motion platform with a large visual display, we examined whether visual cues are used to disambiguate the vestibular-somatosensory signal. We presented different combinations of vestibular-somatosensory signals (by pitching the platform) and visual cues (acceleration specified by optic flow and orientation by horizon pitch) and asked observers to make judgments about perceived body orientation and perceived forward acceleration. They reported in which of two intervals they were more pitched and in which they were more accelerated. Vestibular-somatosensory and horizon pitch affected orientation and acceleration judgments. Optic flow affected acceleration judgments but not orientation judgments. We present a computational model of how cues may be combined to derive separate estimates of gravity and other inertial forces.

Details

show
hide
Language(s):
 Dates: 2004-08
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/4.8.142
BibTex Citekey: 3536
 Degree: -

Event

show
hide
Title: Fourth Annual Meeting of the Vision Sciences Society (VSS 2004)
Place of Event: Sarasota, FL, USA
Start-/End Date: 2004-04-30 - 2004-05-05

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 4 (8) Sequence Number: - Start / End Page: 142 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050