English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Measure Based Regularization

Bousquet, O., Chapelle, O., & Hein, M. (2004). Measure Based Regularization. In S. Thrun, L. Saul, & B. Schölkopf (Eds.), Advances in Neural Information Processing Systems 16 (pp. 1221-1228). Cambridge, MA, USA: MIT Press.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Bousquet, O1, 2, Author           
Chapelle, O1, 2, Author           
Hein, M1, 2, Author           
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: We address in this paper the question of how the knowledge of the marginal distribution P(x) can be incorporated in a learning algorithm. We suggest three theoretical methods for taking into account this distribution for regularization and provide links to existing graph-based semi-supervised learning algorithms. We also propose practical implementations.

Details

show
hide
Language(s):
 Dates: 2004-06
 Publication Status: Issued
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 2260
 Degree: -

Event

show
hide
Title: Seventeenth Annual Conference on Neural Information Processing Systems (NIPS 2003)
Place of Event: Vancouver, BC, Canada
Start-/End Date: 2003-12-09 - 2003-12-11

Legal Case

show

Project information

show

Source 1

show
hide
Title: Advances in Neural Information Processing Systems 16
Source Genre: Proceedings
 Creator(s):
Thrun, S, Editor
Saul, LK, Editor
Schölkopf, B1, Editor           
Affiliations:
1 Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794            
Publ. Info: Cambridge, MA, USA : MIT Press
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 1221 - 1228 Identifier: ISBN: 0-262-20152-6