English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Kernel Hebbian Algorithm for single-frame super-resolution

Kim, K., Franz, M., & Schölkopf, B. (2004). Kernel Hebbian Algorithm for single-frame super-resolution. In A. Leonardis, & H. Bischof (Eds.), ECCV 2004 Workshop on Statistical Learning in Computer Vision (SLCV 2004) (pp. 135-149).

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-D951-6 Version Permalink: http://hdl.handle.net/21.11116/0000-0005-538A-2
Genre: Conference Paper

Files

show Files
hide Files
:
pdf2645.pdf (Any fulltext), 3MB
Name:
pdf2645.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show

Creators

show
hide
 Creators:
Kim, KI1, 2, Author              
Franz, M1, 2, Author              
Schölkopf, B1, 2, Author              
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: This paper presents a method for single-frame image super-resolution using an unsupervised learning technique. The required prior knowledge about the high-resolution images is obtained from Kernel Principal Component Analysis (KPCA). The original form of KPCA, however, can be only applied to strongly restricted image classes due to the limited number of training examples that can be processed. We therefore propose a new iterative method for performing KPCA, the em Kernel Hebbian Algorithm. By kernelizing the Generalized Hebbian Algorithm, one can iteratively estimate the Kernel Principal Components with only linear order memory complexity. The resulting super-resolution algorithm shows a comparable performance to the existing supervised methods on images containing faces and natural scenes.

Details

show
hide
Language(s):
 Dates: 2004-05
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 2645
 Degree: -

Event

show
hide
Title: ECCV 2004 Workshop on Statistical Learning in Computer Vision (SLCV 2004)
Place of Event: Praha, Czech Republic
Start-/End Date: 2004-05-15

Legal Case

show

Project information

show

Source 1

show
hide
Title: ECCV 2004 Workshop on Statistical Learning in Computer Vision (SLCV 2004)
Source Genre: Proceedings
 Creator(s):
Leonardis, A, Editor
Bischof, H, Editor
Affiliations:
-
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 135 - 149 Identifier: -