Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Experimentally optimal ν in support vector regression for different noise models and parameter settings

Chalimourda, A., Schölkopf, B., & Smola, A. (2004). Experimentally optimal ν in support vector regression for different noise models and parameter settings. Neural networks, 17(1), 127-141. doi:10.1016/S0893-6080(03)00209-0.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Chalimourda, A, Autor
Schölkopf, B1, 2, Autor           
Smola, AJ, Autor           
Affiliations:
1Department Empirical Inference, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497795              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: In Support Vector (SV) regression, a parameter ν controls the number of Support Vectors and the number of points that come to lie outside of the so-called var epsilon-insensitive tube. For various noise models and SV parameter settings, we experimentally determine the values of ν that lead to the lowest generalization error. We find good agreement with the values that had previously been predicted by a theoretical argument based on the asymptotic efficiency of a simplified model of SV regression. As a side effect of the experiments, valuable information about the generalization behavior of the remaining SVM parameters and their dependencies is gained. The experimental findings are valid even for complex ‘real-world’ data sets. Based on our results on the role of the ν-SVM parameters, we discuss various model selection methods.

Details

ausblenden:
Sprache(n):
 Datum: 2004-01
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1016/S0893-6080(03)00209-0
BibTex Citekey: 4680
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Neural networks
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: New York : Pergamon
Seiten: - Band / Heft: 17 (1) Artikelnummer: - Start- / Endseite: 127 - 141 Identifikator: ISSN: 0893-6080
CoNE: https://pure.mpg.de/cone/journals/resource/954925558496