Deutsch
 
Hilfe Datenschutzhinweis Impressum
  DetailsucheBrowse

Datensatz

DATENSATZ AKTIONENEXPORT
  Protein homology detection using string alignment kernels

Saigo, H., Vert, J.-P., Ueda, N., & Akutsu, T. (2004). Protein homology detection using string alignment kernels. Bioinformatics, 20(11), 1682-1689. doi:10.1093/bioinformatics/bth141.

Item is

Basisdaten

ausblenden:
Genre: Zeitschriftenartikel

Externe Referenzen

ausblenden:
Beschreibung:
-
OA-Status:

Urheber

ausblenden:
 Urheber:
Saigo, H1, Autor           
Vert , J-P, Autor
Ueda, N, Autor
Akutsu, T, Autor
Affiliations:
1External Organizations, ou_persistent22              

Inhalt

ausblenden:
Schlagwörter: -
 Zusammenfassung: Remote homology detection between protein sequences is a central problem in computational biology. Discriminative methods involving support vector machines (SVM) are currently the most effective methods for the problem of superfamily recognition in the SCOP database. The performance of SVMs depend critically on the kernel function used to quantify the similarity between sequences. We propose new kernels for strings adapted to biological sequences, which we call local alignment kernels. These kernels measure the similarity between two sequences by summing up scores obtained from local alignments with gaps of the sequences. When tested in combination with SVM on their ability to recognize SCOP superfamilies on a benchmark dataset, the new kernels outperform state-of-the art methods for remote homology detection.

Details

ausblenden:
Sprache(n):
 Datum: 2004-07
 Publikationsstatus: Erschienen
 Seiten: -
 Ort, Verlag, Ausgabe: -
 Inhaltsverzeichnis: -
 Art der Begutachtung: -
 Identifikatoren: DOI: 10.1093/bioinformatics/bth141
BibTex Citekey: 4102
 Art des Abschluß: -

Veranstaltung

einblenden:

Entscheidung

einblenden:

Projektinformation

einblenden:

Quelle 1

ausblenden:
Titel: Bioinformatics
Genre der Quelle: Zeitschrift
 Urheber:
Affiliations:
Ort, Verlag, Ausgabe: Oxford : Oxford University Press
Seiten: - Band / Heft: 20 (11) Artikelnummer: - Start- / Endseite: 1682 - 1689 Identifikator: ISSN: 1367-4803
CoNE: https://pure.mpg.de/cone/journals/resource/954926969991