English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Uptake of 18F-Fluorocholine, 18F-Fluoroethyl-L-Tyrosine, and 18F-FDG in Acute Cerebral Radiation Injury in the Rat: Implications for Separation of Radiation Necrosis from Tumor Recurrence

Spaeth, N., Wyss, M., Weber, B., Scheidegger, S., Lutz, A., Verwey, J., et al. (2004). Uptake of 18F-Fluorocholine, 18F-Fluoroethyl-L-Tyrosine, and 18F-FDG in Acute Cerebral Radiation Injury in the Rat: Implications for Separation of Radiation Necrosis from Tumor Recurrence. Journal of Nuclear Medicine, 45(11), 1931-1938.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-F3B9-C Version Permalink: http://hdl.handle.net/21.11116/0000-0005-5064-0
Genre: Journal Article

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Spaeth, N, Author
Wyss, MT, Author
Weber, B1, Author              
Scheidegger, S, Author
Lutz, A, Author
Verwey, J, Author
Radovanovic, I, Author
Pahnke, J, Author
Wild, D, Author
Westera, G, Author
Weishaupt, D, Author
Hermann, DM, Author
Kaser-Hotz , B, Author
Aquzzi, A, Author
Buck, A, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: Differentiation between posttherapy radiation necrosis and recurrent tumor in humans with brain tumor is still a difficult diagnostic task. The new PET tracers (18)F-fluoro-ethyl-l-tyrosine (FET) and (18)F-fluorocholine (N,N-dimethyl-N-(18)F-fluoromethyl-2-hydroxyethylammonium [FCH]) have shown promise for improving diagnostic accuracy. This study assessed uptake of these tracers in experimental radiation injury. METHODS: In a first model, circumscribed lesions were induced in the cortex of 35 rats using proton irradiation of 150 or 250 Gy. After radiation injury developed, uptake of (18)F-FET, (18)F-FCH, and (18)F-FDG was measured using autoradiography and correlated with histology and disruption of the blood-brain barrier as determined with Evans blue. In a second model, uptake of the tracers was assessed in acute cryolesions, which are characterized by the absence of inflammatory cells. RESULTS: Mean (18)F-FET, (18)F-FCH, and (18)F-FDG standardized uptake values in the most active part of the radiation lesion and the contralateral normal cortex (in parentheses) were 2.27 +/- 0.46 (1.42 +/- 0.23), 2.52 +/- 0.42 (0.61 +/- 0.12), and 6.21 +/- 1.19 (4.35 +/- 0.47). The degree of uptake of (18)F-FCH and (18)F-FDG correlated with the density of macrophages. In cryolesions, (18)F-FET uptake was similar to that in radiation lesions, and (18)F-FCH uptake was significantly reduced. CONCLUSION: Comparison of tracer accumulation in cryolesions and radiation injuries demonstrates that (18)F-FET uptake is most likely due to a disruption of the blood-brain barrier alone, whereas (18)F-FCH is additionally trapped by macrophages. Uptake of both tracers in the radiation injuries is generally lower than the published uptake in tumors, suggesting that (18)F-FET and (18)F-FCH are promising tracers for separating radiation necrosis from tumor recurrence. However, the comparability of our data with the literature is limited by factors such as different species and acquisition protocols and modalities. Thus, more studies are needed to settle this issue. Nevertheless, (18)F-FCH and (18)F-FET seem superior to (18)F-FDG for this purpose.

Details

show
hide
Language(s):
 Dates: 2004-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 2996
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Nuclear Medicine
  Other : J. Nucl. Med.
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: New York : Society of Nuclear Medicine
Pages: - Volume / Issue: 45 (11) Sequence Number: - Start / End Page: 1931 - 1938 Identifier: ISSN: 0161-5505
CoNE: https://pure.mpg.de/cone/journals/resource/991042725914954