English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  How to Deal with Large Dataset, Class Imbalance and Binary Output in SVM based Response Model

Shin, H., & Cho, S. (2003). How to Deal with Large Dataset, Class Imbalance and Binary Output in SVM based Response Model. In Korean Data Mining Conference 2003 (pp. 93-107).

Item is

Files

show Files

Creators

show
hide
 Creators:
Shin, H1, Author              
Cho, S, Author
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: [Abstract]: Various machine learning methods have made a rapid transition to response modeling in search of improved performance. And support vector machine (SVM) has also been attracting much attention lately. This paper presents an SVM response model. We are specifically focusing on the how-to’s to circumvent practical obstacles, such as how to face with class imbalance problem, how to produce the scores from an SVM classifier for lift chart analysis, and how to evaluate the models on accuracy and profit. Besides coping with the intractability problem of SVM training caused by large marketing dataset, a previously proposed pattern selection algorithm is introduced. SVM training accompanies time complexity of the cube of training set size. The pattern selection algorithm picks up important training patterns before SVM response modeling. We made comparison on SVM training results between the pattern selection algorithm and random sampling. Three aspects of SVM response models were evaluated: accuracies, lift chart analysis, and computational efficiency. The SVM trained with selected patterns showed a high accuracy, a high uplift in profit and in response rate, and a high computational efficiency.

Details

show
hide
Language(s):
 Dates: 2003-12
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 2709
 Degree: -

Event

show
hide
Title: Korean Data Mining Conference 2003
Place of Event: Seoul, South Korea
Start-/End Date: -

Legal Case

show

Project information

show

Source 1

show
hide
Title: Korean Data Mining Conference 2003
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 93 - 107 Identifier: -