English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Effects of attention on perceptual learning of shapes in the human visual cortex

Kourtzi, Z., Betts, L., & Sarkheil, P. (2003). Effects of attention on perceptual learning of shapes in the human visual cortex. In 33rd Annual Meeting of the Society for Neuroscience (Neuroscience 2003).

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-DB11-6 Version Permalink: http://hdl.handle.net/21.11116/0000-0005-76F3-4
Genre: Meeting Abstract

Files

show Files

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
Kourtzi, Z1, 2, 3, Author              
Betts, L1, 3, Author              
Sarkheil, P1, 2, 3, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
3Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Perceptual learning and attention have been shown to modulate visual processing in the human brain. This study used fMRI to investigate the effect of these processes in the representation of shapes in early (V1, V2, VP, V4) and higher visual areas known to be involved in shape processing (Lateral Occipital Complex-LOC). The stimuli consisted of closed contours rendered by aligned gabor elements and embedded in two different background types: a) random gabor elements that interfered with the detection and integration of the contour elements (distributed attention condition) or b) uniformly-oriented elements that facilitated these processes (focused attention condition). We measured behavioral and fMRI responses while observers performed a 2-AFC shape discrimination task in two different sessions, one before and one after three days of training. Observers were trained in the distributed attention condition and were tested in both attention conditions on novel and learned shapes. Prior to training, no differences were observed in the behavioral performance or the fMRI responses across early and higher visual areas for the novel vs. the training shapes. After training, the observers showed significantly higher accuracy in the discrimination task for learned vs. novel shapes in both the distributed and the focused attention conditions. fMRI responses across visual areas were significantly stronger for learned than novel stimuli in the distributed attention condition. Interestingly, fMRI responses in the posterior subregion of the LOC (LO), known to be involved in the representation of shape features, showed stronger responses for novel than learned stimuli in the focused attention condition. These results suggest that increased shape saliency due to focused attention may enhance the tuning of the feature representation for familiar shapes and facilitate the representation of novel shape features.

Details

show
hide
Language(s):
 Dates: 2003-11
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: BibTex Citekey: KourtziBS2003
 Degree: -

Event

show
hide
Title: 33rd Annual Meeting of the Society for Neuroscience (Neuroscience 2003)
Place of Event: New Orleans, LA, USA
Start-/End Date: 2003-11-08 - 2003-11-12

Legal Case

show

Project information

show

Source 1

show
hide
Title: 33rd Annual Meeting of the Society for Neuroscience (Neuroscience 2003)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 126.5 Start / End Page: - Identifier: -