English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Kernel-based nonlinear blind source separation

Harmeling, S., Ziehe, A., Kawanabe, M., & Müller, K.-R. (2003). Kernel-based nonlinear blind source separation. Neural computation, 15(5), 1089-1124. doi:10.1162/089976603765202677.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-DC87-3 Version Permalink: http://hdl.handle.net/21.11116/0000-0005-6AA3-C
Genre: Journal Article

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Harmeling, S1, Author              
Ziehe, A, Author
Kawanabe, M, Author
Müller, K-R1, Author              
Affiliations:
1External Organizations, ou_persistent22              

Content

show
hide
Free keywords: -
 Abstract: We propose kTDSEP, a kernel-based algorithm for nonlinear blind source separation (BSS). It combines complementary research fields: kernel feature spaces and BSS using temporal information. This yields an efficient algorithm for nonlinear BSS with invertible nonlinearity. Key assumptions are that the kernel feature space is chosen rich enough to approximate the nonlinearity and that signals of interest contain temporal information. Both assumptions are fulfilled for a wide set of real-world applications. The algorithm works as follows: First, the data are (implicitly) mapped to a high (possibly infinite)—dimensional kernel feature space. In practice, however, the data form a smaller submanifold in feature space—even smaller than the number of training data points—a fact that has already been used by, for example, reduced set techniques for support vector machines. We propose to adapt to this effective dimension as a preprocessing step and to construct an orthonormal basis of this submanifold. The latter dimension-reduction step is essential for making the subsequent application of BSS methods computationally and numerically tractable. In the reduced space, we use a BSS algorithm that is based on second-order temporal decorrelation. Finally, we propose a selection procedure to obtain the original sources from the extracted nonlinear components automatically. Experiments demonstrate the excellent performance and efficiency of our kTDSEP algorithm for several problems of nonlinear BSS and for more than two sources.

Details

show
hide
Language(s):
 Dates: 2003-05
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: DOI: 10.1162/089976603765202677
BibTex Citekey: 6356
 Degree: -

Event

show

Legal Case

show

Project information

show

Source 1

show
hide
Title: Neural computation
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Cambridge, Mass. : MIT Press
Pages: - Volume / Issue: 15 (5) Sequence Number: - Start / End Page: 1089 - 1124 Identifier: ISSN: 0899-7667
CoNE: https://pure.mpg.de/cone/journals/resource/954925561591