English
 
Help Privacy Policy Disclaimer
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Mapping Macaque Visual Cortex Organization with BOLD and MION fMRI

Schmid, M., Smirnakis, S., Tolias, A., Augath, M., & Logothetis, N. (2002). Mapping Macaque Visual Cortex Organization with BOLD and MION fMRI. Poster presented at 32nd Annual Meeting of the Society for Neuroscience (Neuroscience 2002), Orlando, FL, USA.

Item is

Files

show Files

Locators

show
hide
Description:
-
OA-Status:

Creators

show
hide
 Creators:
Schmid, M1, 2, Author           
Smirnakis, SM1, 2, Author           
Tolias, AS1, 2, Author           
Augath, M1, 2, Author           
Logothetis, NK1, 2, Author           
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Our research aims to use high field (4.7T) functional magnetic resonance imaging (fMRI) to map changes in cortical organization as a function of time after de-afferenting part of the primary visual cortex by inducing homonymous retinal lesions (Smirnakis et al., Neuroscience 2002). In order to obtain detailed maps of cortical organization by fMRI it is essential to use a strategy that maximizes spatiotemporal resolution. The contrast agent monocrystalline iron oxide nanoparticle (MION) has recently been used in the rat (Mandeville et al., Magn Res Med 1998,99) as well as in the awake behaving macaque (W. Vanduffel et al., Neuron 2001) to increase the sensitivity of fMRI imaging as compared to imaging based on the blood oxygenation level dependent (BOLD) signal. It is unclear, however, to what degree the advantage persists at higher field strengths, as well as whether the spatiotemporal profile of the MION (blood volume) induced signal provides adequate resolution to map cortical organization.
Here we looked at the benefit of MION versus BOLD at 4.7 Tesla in the anesthesized macaque preparation (Logothetis at al., Nat Neurosci 1999). Visual stimuli of various sizes were presented in block design against background illumination, as well as retinotopic mapping was performed, with and without MION. Preliminary results suggest that MION invariably increased the sensitivity of the technique at 4.7T, boosting the modulation of the signal by a factor of 3-7 above that seen with the BOLD. The effect of MION on the spatial resolution is under investigation.

Details

show
hide
Language(s):
 Dates: 2002-11
 Publication Status: Published online
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 1920
 Degree: -

Event

show
hide
Title: 32nd Annual Meeting of the Society for Neuroscience (Neuroscience 2002)
Place of Event: Orlando, FL, USA
Start-/End Date: 2002-11-02 - 2002-11-07

Legal Case

show

Project information

show

Source 1

show
hide
Title: 32nd Annual Meeting of the Society for Neuroscience (Neuroscience 2002)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 759.5 Start / End Page: - Identifier: -