English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  No visual dominance for remembered turns: Psychophysical experiments on the integration of visual and vestibular cues in Virtual Reality

von der Heyde, M., Riecke, B., Cunningham, D., & Bülthoff, H. (2001). No visual dominance for remembered turns: Psychophysical experiments on the integration of visual and vestibular cues in Virtual Reality. Poster presented at First Annual Meeting of the Vision Sciences Society (VSS 2001), Sarasota, FL, USA.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-E187-F Version Permalink: http://hdl.handle.net/21.11116/0000-0005-A9C7-C
Genre: Poster

Files

show Files
hide Files
:
pdf630.pdf (Any fulltext), 424KB
Name:
pdf630.pdf
Description:
-
Visibility:
Public
MIME-Type / Checksum:
application/pdf / [MD5]
Technical Metadata:
Copyright Date:
-
Copyright Info:
-
License:
-

Locators

show
hide
Description:
-

Creators

show
hide
 Creators:
von der Heyde, M1, 2, Author              
Riecke, BE1, 2, Author              
Cunningham, DW1, 2, Author              
Bülthoff, HH1, 2, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: In most virtual reality (VR) applications turns are misperceived, which leads to disorientation. Here we focus on two cues providing no absolute spatial reference: optic flow and vestibular cues. We asked whether: (a) both visual and vestibular information are stored and can be reproduced later; and (b) if those modalities are integrated into one coherent percept or if the memory is modality specific. We used a VR setup including a motion simulator (Stewart platform) and a head-mounted display for presenting vestibular and visual stimuli, respectively. Subjects followed an invisible randomly generated path including heading changes between 8.5 and 17 degrees. Heading deviations from this path were presented as vestibular roll rotation. Hence the path was solely defined by vestibular (and proprioceptive) information. The subjects' task was to continuously adjust the roll axis of the platform to level position. They controlled their heading with a joystick and thereby maintained an upright position. After successfully following a vestibularly defined path twice, subjects were asked to reproduce it from memory. During the reproduction phase, the gain between the joystick control and the resulting visual and vestibular turns were independently varied. Subjects learned and memorized curves of the vestibularly defined virtual path and were able to reproduce the amplitudes of the turns. This demonstrates that vestibular signals can be used for spatial orientation in virtual reality. Since the modality with the bigger gain factor had a dominant effect on the reproduced turns, the integration of visual and vestibular information seems to follow a “max rule”, in which the larger signal is responsible for the perceived and memorized heading change.

Details

show
hide
Language(s):
 Dates: 2001-12
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: DOI: 10.1167/1.3.188
BibTex Citekey: 630
 Degree: -

Event

show
hide
Title: First Annual Meeting of the Vision Sciences Society (VSS 2001)
Place of Event: Sarasota, FL, USA
Start-/End Date: 2001-05

Legal Case

show

Project information

show

Source 1

show
hide
Title: Journal of Vision
Source Genre: Journal
 Creator(s):
Affiliations:
Publ. Info: Charlottesville, VA : Scholar One, Inc.
Pages: - Volume / Issue: 1 (3) Sequence Number: - Start / End Page: 188 Identifier: ISSN: 1534-7362
CoNE: https://pure.mpg.de/cone/journals/resource/111061245811050