English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Magnetic resonance imaging of neuronal connections in the macaque monkey

Saleem, K., Prause, B., Pauls, J., Augath, M., Trinath, T., Hashikawa, T., et al. (2001). Magnetic resonance imaging of neuronal connections in the macaque monkey. In 31st Annual Meeting of the Society for Neuroscience (Neuroscience 2001).

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-E1C5-5 Version Permalink: http://hdl.handle.net/21.11116/0000-0005-AA1D-C
Genre: Meeting Abstract

Files

show Files

Locators

show

Creators

show
hide
 Creators:
Saleem, KS, Author
Prause, BA1, 2, Author              
Pauls, J1, 2, Author              
Augath, M1, 2, Author              
Trinath, T1, 2, Author              
Hashikawa, T, Author
Logothetis, NK1, 2, Author              
Affiliations:
1Department Physiology of Cognitive Processes, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497798              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: To date neuroanatomical connections have been mainly examined by means of degeneration methods and tracing techniques. Such studies require fixed processed tissue for the data analysis, and therefore they cannot be applied on the live animal. In the present study, we examined the neuronal connections in-vivo, particularly the output connections of striatum using MRI visible contrast agent (MnCl2) that is transported anterogradely through the axon, and subsequently trans-synaptically. MnCl2 (0.8 M) was injected into the caudate nucleus, and putamen in two rhesus monkeys. After the injection, the axonal transport of MnCl2 was continuously monitored for 24 hr or 45 hr using a 4.7T Biospec (Bruker, Inc) NMR scanner. We found a clear signal enhancement in the external and internal segments of the globus pallidus (Gpe and Gpi, respectively), and the substantia nigra, 24h after MnCl2 injection into the head of the caudate nucleus or putamen. Consistent with the previous anatomical studies, the spatial distribution of MnCl2 signal in globus pallidus, was different between caudate and putamen injections, with the former resulting in tracer accumulation in the dorsomedial, and the latter in the ventrolateral portion of the Gpe and Gpi. These findings were also confirmed histologically after WGA-HRP injection into the same region of the caudate or putamen, where the MnCl2 was injected. In addition, we found a strong signal increase in the thalamus and the cortical areas, particularly prefrontal and ventral inferotemporal areas, 45h after striatal injection. In conclusion, the tracer can be used to visualize neural networks with MRI.

Details

show
hide
Language(s):
 Dates: 2001-11
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Method: -
 Identifiers: BibTex Citekey: 1066
 Degree: -

Event

show
hide
Title: 31st Annual Meeting of the Society for Neuroscience (Neuroscience 2001)
Place of Event: San Diego, CA, USA
Start-/End Date: 2001-11-10 - 2001-11-15

Legal Case

show

Project information

show

Source 1

show
hide
Title: 31st Annual Meeting of the Society for Neuroscience (Neuroscience 2001)
Source Genre: Proceedings
 Creator(s):
Affiliations:
Publ. Info: -
Pages: - Volume / Issue: - Sequence Number: 783.4 Start / End Page: - Identifier: -