English
 
User Manual Privacy Policy Disclaimer Contact us
  Advanced SearchBrowse

Item

ITEM ACTIONSEXPORT
  Visual-vestibular sensor integration follows a max-rule: results from psychophysical experiments in virtual reality

von der Heyde, M., Riecke, B., Cunningham, D., & Bülthoff, H. (2001). Visual-vestibular sensor integration follows a max-rule: results from psychophysical experiments in virtual reality. Poster presented at 4. Tübinger Wahrnehmungskonferenz (TWK 2001), Tübingen, Germany.

Item is

Basic

show hide
Item Permalink: http://hdl.handle.net/11858/00-001M-0000-0013-E2F4-4 Version Permalink: http://hdl.handle.net/21.11116/0000-0005-ADE4-7
Genre: Poster

Files

show Files

Locators

show

Creators

show
hide
 Creators:
von der Heyde, M1, 2, Author              
Riecke, BE1, 2, Author              
Cunningham, DW1, 2, Author              
Bülthoff, HH1, 2, Author              
Affiliations:
1Department Human Perception, Cognition and Action, Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497797              
2Max Planck Institute for Biological Cybernetics, Max Planck Society, Spemannstrasse 38, 72076 Tübingen, DE, ou_1497794              

Content

show
hide
Free keywords: -
 Abstract: Perception of ego turns is crucial for navigation and self-localization. Yet in most virtual reality (VR) applications turns are misperceived, which leads to disorientation. Here we focus on two cues providing no absolute spatial reference: optic flow and vestibular cues. We asked whether: (a) both visual and vestibular information are stored and can be reproduced later; and (b) if those modalities are integrated into one coherent percept or if the memory is modality specific. In the following experiment, subjects learned and memorized turns and were able to reproduce them even with different gain factors for the vestibular and visual feedback. We used a VR setup including a motion simulator (Stewart platform) and a head-mounted display for presenting vestibular and visual stimuli, respectively. Subjects followed an invisible randomly generated path including heading changes between 8.5 and 17 degrees. Heading deviations from this path were presented as vestibular roll rotation. Hence the path was solely defined by vestibular (and proprioceptive) information. One group of subjects' continuously adjusted the roll axis of the platform to level position. They controlled their heading with a joystick and thereby maintained an upright position. The other group was passively guided through the sequence of heading turns without any roll signal. After successfully following a vestibularly defined path twice, subjects were asked to reproduce it from memory. During the reproduction phase, the gain between the joystick control and the resulting visual and vestibular turns were independently varied by a factor of 1/sqrt(2), 1 or sqrt(2). Subjects from both groups learned and memorized curves of the vestibularly defined virtual path and were able to reproduce the amplitudes of the turns. This demonstrates that vestibular signals can be used for spatial orientation in virtual reality. Since the modality with the bigger gain factor had for both groups a dominant effect on the reproduced turns, the integration of visual and vestibular information seems to follow a "max rule", in which the larger signal is responsible for the perceived and memorized heading change.

Details

show
hide
Language(s):
 Dates: 2001-03
 Publication Status: Published in print
 Pages: -
 Publishing info: -
 Table of Contents: -
 Rev. Type: -
 Identifiers: BibTex Citekey: 63
 Degree: -

Event

show
hide
Title: 4. Tübinger Wahrnehmungskonferenz (TWK 2001)
Place of Event: Tübingen, Germany
Start-/End Date: 2001-03-02 - 2001-03-04

Legal Case

show

Project information

show

Source 1

show
hide
Title: TWK 2001: Beiträge zur 4. Tübinger Wahrnehmungskonferenz
Source Genre: Proceedings
 Creator(s):
Bülthoff, HH1, Editor            
Gegenfurtner, KR, Editor            
Mallot, HA, Editor            
Ulrich, R, Editor
Affiliations:
1 Max Planck Institute for Biological Cybernetics, Max Planck Society, ou_1497794            
Publ. Info: Kirchentellinsfurt, Germany : Knirsch
Pages: - Volume / Issue: - Sequence Number: - Start / End Page: 142 Identifier: ISBN: 3-927091-54-5